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A gauge invariant electromagnetic two-point function, crucial to the investigations of the violation of
isospin symmetry, is derived for heavy-light quark systems. Thus QED can be consistently introduced
into the QCD sum rule method, which was not previously possible.
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The origin of mass differences in isospin multiplets has
long been of great interest in nuclear and particle physics
as a source of information about symmetry violations.
Hadronic isospin violations are particularly important in
that they arise from nonperturbative quantum chromo-
dynamics (QCD) as well as quark mass differences (see
Ref. [1] for a review of the early work in this area), and,
of course, electromagnetic effects. Among the first appli-
cations of the method of QCD sum rules was the study
of isospin violations in the p-w system [2], where it was
recognized that the isospin splitting of the light-quark con-
densates can produce effects as large as the current-quark
mass splittings and electromagnetic effects. Recently the
QCD sum rule method has been used to study the neutron-
proton mass difference [3,4], the octet baryon mass split-
tings [5], and the mass differences in the charmed meson
systems (the D and D™ scalar and vector mesons) [6].

In comparison with hadronic quark models, the QCD
sum rule method for calculating isospin splittings has the
advantage that one can directly use QED field theory
rather than rely on models to estimate Coulomb correc-
tions. This, however, has not been done. In our earlier
attempt to calculate the standard two-loop QED contribu-
tions to the isospin mass splittings in heavy-light quark
systems (Fig. 1) using the sum rule method, we found [7]
that for the charged mesons, involving charged currents,
the calculation is not gauge invariant. The objective of
the present Letter is to develop a gauge invariant theory
for QED phenomena within the QCD sum rule method.

The basic approach of the QCD sum rule in heavy light
quark systems is to study the two-point function in the
Wilson operator product expansion (OPE), defined by

n,(q* =i j d*x " (T[J,,(x)J,(0)])
=2 1,()0, (D)
for the heavy-light quark current
Jux) = g0y, 0(x). 2

The local operators {O,} consisting of quark and gluon
fields and the Wilson coefficients functions {/ Zu(qz)} have
been extensively discussed in the literature in the studies
of the masses and their decay constants for heavy-light
quark systems.

In order to study the violations of the isospin symme-
try, the electromagnetic effects should also be written in
the framework of the operator product expansion. The
leading electromagnetic effects in this approach are the
two-point functions from a two-loop perturbative contri-
bution, whose Feynman diagrams are shown in Fig. 1.
For the charge neutral current, one could simply obtain
the two-point functions by changing the gluons in QCD
to the photons in QED in Fig. 1, since the two-point func-
tions have been calculated in QCD [8]. Their imaginary
parts are
2M2

Although our derivation is for heavy-light quark mesons, Im[IT"(g?)] = 3¢ — (1 - x)2f(x), 3)
the method is quite general and can be used for baryons 8
as well as mesons. | and
Im[11%(¢%)] = il a- x)z[(Z + 00+ O] -G+ — x)ln( ol ) 2 gp) -5 - 2x - ]
872 1 —x (1 — x)? 1 —x
(€]
for pseudoscalar and vector currents, where x = M?/q>
F0) = 24 2100 + GG =0+ (5 = x = N = (3= x)ma - ), s)
4 2 1 —x 2
and [(x) = — [y In(1 — y)dy/y is the Spencer function. Obviously, this result is gauge invariant.

The calculation of the two-point functions for a charged current is much more complicated. Since the Feynman
diagrams in Fig. 1 are weighted by the products of different charges, the corresponding two point functions are not
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FIG. 1. The two-loop perturbative corrections for charge
neutral currents with charged constituents.

gauge invariant. The physical origin of this problem is
that under the gauge transformation

glx) — e rDg(x),
Q(x) — €A™ (x),

Ap(x) — Au(x) — 9,AW), (6)
we have
Ju(x) — T}, (x) = "2 g(x)y, 0 (x)
= gi/\(ﬂ(egﬂq)J#(x) @)
(notice e, = —e;), therefore, the current J, becomes

gauge dependent with e, + ¢p = er. Of course, gauge
invariance is a fundamental property of electromagnetic
interactions, and any observable obtained using the cur-
rent must be gauge invariant.

In order to obtain a solution to the problem, let us start
with a gauge invariant form of the two-point function,
which is obtained by inserting the link operator into the
form given in Eq. (1), with the definition

la?) = i [ a0 (r[s,e % L2007, 0)])

y [ d'x SIEINTLIL (T, ®)
where Q,, is the charge operator and
I = glo)e@ [oh= 00"y, o) (9)

The gauge transformation of the electromagnetic field
A, (x) cancels those of quark fields g(x) and Q(x) so that
two-point function is gauge invariant. This is the QED
analog to the QCD treatment introduced [9] for the pion
wave function.

Expanding to order «, one finds that there are two
currents at the two-loop level

JL(x) = T0(x) + J5 (). (10)

The current J9 (x) is given by insertion of photon vertices
in the quark lines of the current given by Eq. (2), and the
evaluation of the resulting two-point functions is carried
out by the standard two-loop diagrams shown in Fig. 1.
The charges involved are ey and e, for these processes.
The second current of Eq. (10),

Jp(x) = ierg(x)yu fox A(Y)dy*Qx), (1)

corresponds to an additional vertex function with the
charge er, and in the evaluation of the two-point function
gives rise to the additional diagrams shown in Fig. 2,

which we now discuss in detail.
invariant two-point function is

M,,(¢%) = 11%,(¢°) + I1%,(g%), (12)

The resulting gauge

where

9,(¢*) = if d*x e (T [J0(x)T2(0)]) (13)

at the two-loop level is given by the Feynman diagrams in
Fig. 1, and

e, =i f d*x e T[J5,(x)T£(0) + J¢,(x)T2(0)

+ IS (0TEO)] (14)
generates the additional Feynman diagrams shown in
Fig. 2. These additional terms introduced by II¢, arise

from the additional vertex function corresponding to J&.
The fact that such additional vertex functions must be
present for charged currents for gauge invariance has been
observed previously. See, e.g., Ref. [10].

Since the masses for the heavy and light quarks are not
the same, it is more convenient to calculate the two-point
function in momentum space. The Fourier transformation
of the operator [ A, (y) dy* gives

F(qZ) — fd4x einJ; Ay.(}’) dy.u-
= .g.%[d4x(aueiq1)[ A#(y)dyl’«
ig 0
= -2 pv(y), (15)
q

where ¢, is the momentum carried by photon field A, (g),
therefore the current J¢(g) in the momentum space is
given by

(k1 = ka2)

k — k)2 A% (ki — k2)Q(ka) .

(16)

The sum of the Feynman diagrams in Fig. 2 has a simple
form

& OO

2-a 2-b 2-c

2 &

2-d 2-f

Jilg) = —erglqg — k\)yu

FIG. 2. Additional diagrams generated by J;,(x) for charged
heavy-light quark systems. See text.
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e (4%) = _erleq + eg) [ dPkidPk, where 1,,(¢%) is given in Eq. (17). By substituting the
wrid 2874 P gauge dependent photon propagator into wa(qz), one
Trly kov,(fy — 4)] can show that the gauge dependent part of the two-

loop integral for T1¢,(¢%) is identical to the expression

— 4(K2 — M2 — g)2
(ki = k) ky — M?) (ki = q) in Eq. (17). Therefore, the gauge dependent two-loop

= er(eg + ep)l,(q?). a7 integrals in H‘:“,(qz) and I1¢,(g%) exactly cancel each
To show that the addition of l'[i“,(qz) indeed makes other, and we have total gauge invariant results. This
the total two-point function 1I,,(g?) gauge invariant, provides an important check at the two-loop level that
we separate II),(g°) into the gauge dependent and  the two-point function II,,(¢?) for the current J/(x) in
independent parts Eq. (10) is indeed gauge invariant.
. : ) .
H(}L,,(qz) _ eélfw(qz) n ezglg,,(qz) _ equIZg(qz) EqT(()lez\;a;Slate the two-point function I1,,(g?), we rewrite
= —eqeoll?,(g%) + 12,(q%) + 112(q7)]
2y — T799( 2 q 2 Q (,2
+ere,df, (@) + ereglf(a?),  (18) W (q) = TWolq) + T (¢ + TL(6D), - 20)
where IZ,,(qz) and Ig,,(qz) represent the self-energy dia- where
gram for the light quark g(x) and heavy quark Q(x),
respectively, and 7¢%(g*) corresponds to the photon ex- 99(q%) = —eqepllf,(g%) + 12,(4%) + I:2(¢D)], (21)

change between the light and heavy quarks in Fig. 1. The
term with IZV(‘IZ) + I,%,(qz) + jzg((f) in Eq. (18) is, of whose analytical expressions can be obtained from
course, gauge invariant, and the analytical expressions of ~ Egs. (3) and (4),

its imaginary part can be obtained from Egs. (3) and (4). ) ) )

The last two terms in Eq. (18) are gauge dependent; if we I1%,(q%) = ereg[1],(q7) + I..(q7)], (22)
substitute the gauge dependent part of the photon propa-

gator (Dy)ea = (ki = (ks ~ ka)y /(i = ka)* into the and
oo igrals 1,4 and 15,4, e gvge deen N9, - erealile) + el @
[7,(g))ea = 2,(")]ea = —1u(q?), (19)  For I19,,(g%), we have

|

1 dPk; Trly, (k2 + M)y, (K2 — §F (k) (K2 — )]
15,67 + L) = 55— | —5—" @ — ) — o) : (24)
where
B dPky vk — By y (k= k)P (ki — ko)
Flle) = f 7P (ki — ko) (k) — q)z( g (U — ko) ) >

is a one-loop wave-function renormalization equivalently in Landau gauge. It has been shown that F(k,) vanishes [11]
for a zero mass particle in dimensional regularization. This leads to

12, (¢*) = ereoll,(g*) — I%,(q)], (26)
where H,Qu,(qz) is proportional to the mass of the heavy quarks. This shows that the divergence induced by the wave-
function renormalization does not exist in Eq. (26), which implies that the Ward identity is restored in this approach.

After including the mass renormalization, the two-loop integral 119, (¢%) in the dimensional regularization is

2,v\¢€ 1€ (qz) 2 \€ 3 ) 2 \€
peny Tu ) 2 _ 3a. o ¢ 2 i 0 2\ _ a2 :{
= — + (=
( 4 ) eger 3(*6]2) [ 41re M aMI’“’(q ) (_qz) 7507 = IE,(gM)] |, 27

where

2y —
I,Z,V(q ) -

ey f 4Pk Trly, (k + M)y, = §)] o8

1672 wD/2 (k2 — M?)(k — q)?

is the one-loop integral, D = 4 — 2¢, € — 0%, is the number of spacetime dimensions, and the running mass M (u) is

related to the pole mass M by [8]
2
v — _ %e L
oo = - 2= [su(22) o] -

The evaluation of Eq. (27) is perfdrmed in the modified minimal subtraction scheme (MS). Here we only present the
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imaginary parts of II}“,(q2) for the pseudoscalar and the vector states,

3a.egerM? 1 — 3
0(g2)) = 2ZeCeerr - — )2 X 21 = )2
Im(11¢,(¢%)) o [2x(1 x) + 2In(x) + (1 = x) 1n< . >+ S =% ] (30)
and
a.eper 1 —
m(119(4") = 25227 22 + 0 [x(1 = 0 + In@) + (1 = 07n( )]
1672 x
2 3 2
#02(x( = 0 + ) + 20— 2] 31
|
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applications of this result to isospin splittings of heavy-
light quark systems as well as the kaon systems are in
progress, and will be given elsewhere.
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