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Mean Nearest-Neighbor Distance in Random Packings of Hard D-Dimensional Spheres
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We derive the first nontrivial rigorous bounds on the mean distance between nearest neighbors A

in ergodic, isotropic packings of hard D-dimensional spheres that depend on the packing fraction and
nearest-neighbor distribution function. Several interesting implications of these bounds for equilibrium
as well as nonequilibrium ensembles are explored. For an equilibrium ensemble, we find accurate
analytical approximations for A for D = 2 and 3 that apply up to random close packing. Our theoretical
results are in excellent agreement with available computer-simulation data.

PACS numbers: 05.20.—y, 61.20.—p

Random packings of hard spheres and disks have been
used to model a wide variety of physical systems, in-
cluding liquids [1,2], glasses [3],colloidal dispersions [4],
porous media [5], composite materials [6], powders [7],
cell membranes [8], and thin films [9]. In contrast to
ordered sphere packings in D dimensions [10], few rig-
orous results concerning the structure of random packings
of hard D-dimensional spheres have been established. For
example, the mean distance between nearest neighbors A

in random sphere packings, a basic and experimentally ac-
cessible measure of the structure, is not well understood
theoretically for D ~ 2. Knowledge of A is of importance
in diverse fields that span between the physical sciences
(e.g. , controlling the structure of ceramics [ll]) and the
biological sciences (e.g. , characterizing spatial patterns in
animal and plant populations [12] and in organisms [13]).

In this Letter, we derive the first rigorous bounds on
A for ergodic ensembles of statistically isotropic packings
of identical D-dimensional hard spheres [14] that depend
on the sphere packing fraction P and the contact value
of a certain pair distribution function G (defined below).
These results are stated in the form of three theorems and
corollaries which immediately follow from them. Several
interesting implications of these bounds for equilibrium
as well as nonequilibrium ensembles are explored. In
the special case of an equilibrium ensemble, we also find
accurate analytical approximations for A for hard spheres
(D = 3) and disks (D = 2) that apply for the full density
range, i.e., up to random close packing.

Consider general ergodic ensembles of statistically iso-
tropic packings of hard D-dimensional spheres of unit
diameter at number density p. The mean distance between
nearest neighbors A is given by [15]

oo r

A = 1 + exp 2DP G(y)y— '
dy dr, (1)

1 1

where G(r) is the nearest neighbor conditi-onal pair dis
tribution function. The quantity ps(r)G(r) dr is the prob-
ability that particle centers lie in a spherical shell of radius
r and volume s(r) dr, given that there are no other par-
ticle centers in this spherical region except for a particle
located at the origin. Here s(r) is the surface area of a D

dimensional sphere of radius r and @ is the sphere packing
fraction Clea.rly, G(r) = 0 for r ( 1. G(r) should not be
confused with the radial distribution function g(r) which
does not exclude other sphere centers besides the one at
the origin. Clearly, the contact values are the same, i.e.,
G(1) = g(1). G(r) and hence A cannot be obtained exactly
for D ~ 2 [15].

Theorem 1: For any ergodic ensemble of isotropic
packings of identical, D dimensio-nal hard spheres in
which G(1) ~ G(r) for 1 ~ r ~ cc,

A ~ 1 + 1/D2 (t G(1). (2)

Proof: Since G(1) ~ G(r) for 1 ~ r ~ ~, then (1)
leads to the upper bound

exp[ —2 QG(1) (r —1) dr]. (3)

The integral of (3) can be further simplified by transform-
ing to the variable u = r —1, giving

A~ 1+ exp[ —2 P G (1)

A ~ 1 + 1/2D(p/pkT —1) . (5)

This follows from Theorem 1, the fact that the re-
duced equation of state p/pkT = 1 + 2o 'QG(1) [1,2],
and that for equilibrium ensembles (the most random dis
tribution of spheres subject to the impenetrability con
straint) G(r) is a monotonically increasing function of r
[1,15]. This ensemble is a useful model of a wide class of
systems outside the context of liquids, e.g. , suspensions,
packed beds, powders, etc. The constraint (5) could be

X (u + Du ' t . + Du)]du. (4)

Since each term of the polynomial u + Du ' + . . +
Du is positive, the integral of (4) is bounded from above
by retaining only the linear term Du, yielding bound (2).

Corollary 1.1. In the special case ofan equilibrium en
semble of isotropic packings of identical, D dimensional-
hard spheres, the mean distance A is related to the
thermodynamic pressure p, absolute temperature T, and
Boltzmann's constant k by the inequality
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used to make new rigorous statements about the phase dia-
gram of hard-sphere systems.

We now apply Theorem 1 to another important ergodic
ensemble, namely, the nonequilibrium random sequen-
tiai addition (RSA) process, produced by randomly, irre-
versibly, and sequentially placing nonoverlapping objects
into a volume [16—19]. The adsorption of proteins on
solid surfaces [17] and certain coagulation processes [18]
are well modeled by the RSA process, for example. For
identical D-dimensional RSA spheres, the filling process
terminates at the jamming limit at which A must be greater
than unity. Clearly, this jamming limit will be less than
the random clos-e pack-ing limit [20] for equilibrium hard
spheres where A is exactly unity. However, since the ra-
dial distribution function at contact g(1) [or equivalently
G(1)] diverges as p approaches the jamming limit [17],
Theorem 1 leads to the contradictory result that A = 1

at the jamming limit. Since RSA spheres are ergodic and
isotropic, it follows that G(r) near the jamming limit is not
always less than the contact value G(1) for 1 ( r ( Ix.

On physical grounds, it is clear that for sufficiently large
r, G(r) must be larger than G(l). In summary, G(r) is a
nonmonotonic function of r for any D for RSA spheres in
contrast to equilibrium spheres. This has been borne out
by simulations, a subject of a future paper.

Theorem 2: For any ergodic ensemble of isotropic
packings of identical, D dimensiona-l hard spheres in
which (1 —p) ' ( G(r) for 1 ~ r ~ Ixl,

A ( 1 + (1 —Q)/D2 (6)

Proof: The proof of this theorem proceeds in the same
fashion as for Theorem 1.

The condition (1 —P) ' ( G(r) is true for a large
class of ergodic ensembles, including the equilibrium
ensemble [15]. We note that for equilibrium hard rods
(D = 1), the upper bound (6) is exact since G(r) = (1—
P) ' and hence A = 1 + (1 —cb)/2P [15].

To illustrate the utility of Theorem 2, we again examine
the RSA process. For RSA rods (D = 1) at P = 0.5,
Monte Carlo simulations have yielded A = 1.53. Theo-
rem 2, however, states that A ~ 1.5 at @ =- 0.5. We
conclude that G(r) for RSA rods at st! = 0.5 is not always
larger than (1 —P) ' = 2, in contrast to equilibrium
rods. This conclusion is true for P ) 0.5 as well. Note
that as P ~ 0, RSA and equilibrium ensembles become
identical [16].

Theorem 3: For any ergodic ensemble of isotropic
packings of identical, D dimensional hard -spheres,

A(1+ 1/D2

Proof: For any ergodic, isotropic hard-sphere ensem-
ble, it is always true that G(r) ) 1 for 1 ( r ( ~, since
G(r) = 1 applies to "point" particles, i.e., spatially uncor-
related spheres. Using this fact, the proof proceeds in the
same fashion as for Theorem 1.

Theorem 1 is an ensemble-dependent result in that the
mean distance A is given in terms of the contact value G(1).

By contrast, although the inequalities of Theorems 2 and
3 are weaker than (2), they are also more general in that
they depend only on the packing fraction @. Theorem 3,
the most general bound, has some interesting corollaries
which we now state.

Corollary 3.1: Any packing ofidentical, D dim-ensional
hard spheres in which the mean distance obeys the
relation

A) 1+ 1/D2 (8)

cannot be ergodic and isotropic.
Relation (8) defines a region in the @-A plane which is

prohibited to ergodic, isotropic packings, and thus Corol-
lary 3.1 provides a quantitative and experimentally mea-
surable criterion to ascertain when a hard-sphere system
is definitely not ergodic and isotropic Exam. ples of non
ergodic, anisotropic ensembles that obey (8) are periodic
cubic arrays at sufficiently small packing fractions. For
example, for periodic hard rods (D = 1), A = 1 + (1—
@)/stl, and hence this system satisfies (8) for all p ( 1/2.
Figures 1 and 2 depict the region prohibited to ergodic,
isotropic systems for D = 3 and D = 2, respectively.

Corollary 3.2: As the dimension D of any ergodic
ensemble of isotropic packings of identical, hard spheres
increases, the mean distance drops off at least as fast
as (D2o) ' and approaches unity for nonzero @ in the
limit D ~ Ix. The maximum packing fraction p, in turn
approaches zero in the limit D ~ oo.

To our knowledge, this is the first rigorous proof
that @,~ 0 as D ~ ~ for ergodic hard-sphere systems.
Figure 3 shows how the upper bound on A of Theorem 3
dramatically drops off as D is increased. Corollary 3.2
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FIG. 1. Mean nearest-neighbor distance A (in units of diame-
ter) vs packing fraction @ for hard spheres (D = 3). Thin solid
line is equilibrium prediction from (1) and (10). Open circles
are corresponding simulation data [25]. Thin dashed line is
upper bound of Theorem 1 for an equilibrium ensemble from
(17). Thick dashed and solid lines are upper bounds of The-
orems 2 and 3, respectively. Shaded region is prohibited to
ergodic, isotropic hard spheres according to Corollary 3.1.
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freezing point Pf up to the random-close-packing fraction
@, [22]. For D = 2 and 3, Torquato, Lu, and Rubinstein
[15] derived approximations for G(r) that were shown to
be accurate up to the freezing density. Their procedure
relies on knowing accurately the contact value of the
radial distribution function g(1) or, equivalently, G(1).
They explored several traditional choices for G(1) that
possess poles at P = 1. Such classical expressions are
in good agreement with simulation data up to the freezing
packing fraction @f but diverge from the data for @ larger
than Pf [2]. Indeed, they predict a close-packing fraction
at the unphysical value P = 1 and hence are inadequate
for @ near P, . We therefore seek relations for g(1) or
G(1) that are accurate up to P, .

Song, Stratt, and Mason [2] have argued that g(1)
diverges for P near P, according to the scaling law

(9)
FIG. 2. Mean nearest-neighbor distance A (in units of diame-
ter) vs packing fraction P for hard disks (D = 2). Thin solid
line is equilibrium prediction from (1) and (14). Thin dashed
line is upper bound of Theorem 1 for an equilibrium ensemble
from (18). Thick dashed and solid lines are upper bounds of
Theorems 2 and 3, respectively. Shaded region is prohibited to
ergodic, isotropic hard disks according to Corollary 3.1.

implies the interesting fact that all ensembles (equilibrium
or not) lose their distinction as D is made large. The
fact that the maximum packing fraction P, decreases with
increasing D is consistent with random-close-packing
experiments for D = 2 (@, = 0.82 [21]) and D = 3
(P, = 0.64 [21]). For hard rods (D = 1), @, is trivially
unity. For RSA ensembles, P, = 0.75 for D = 1 [16],
@, = 0.55 for D = 2 [17],and P, = 0.38 for D = 3 [18],
where @, is the jamming limit.

We now obtain the mean distance A by deriving new
expressions for the distribution function G(r) for an
equilibrium ensemble of hard spheres that are accurate
for all densities, including the metastable branch from the

4.0

3.5

Recent simulations [23] suggest that s = 1 for D = 2 and
3 (s = 1 exactly for D = 1).

We make use of an important observation, namely, that
the functional nature of g(1) between dilute and freez
ing densities is fundamentally different than that between
freezing and random close packing Asim. pie form for
g(1) is assumed between freezing and random close pack-
ing that incorporates the correct pole at @, [cf. (9)], en-
abling us to find both accurate and simple expressions for
G(r) and, hence, the mean distance A. Simulation data
[2] reveals that, to an excellent approximation, g '(1) de-
creases linearly from its value of gf '(1) at P = ttf to
zero at the random-close-packing fraction P = @,. Thus,
for @f ( P ( P„we assume that G(l) = gf(1)(@, —
Pf)/(P, —P). For 0 ( P ~ Pf, we will employ expres-
sions possessing poles at @ = 1 as described below. Our
expressions for g '(1) are in very good agreement with the
empirical fits of Song, Stratt, and Mason [2] for all @, i.e.,

We can use this information on g(1), in a similar manner
[20] to that employed by Torquato, Lu, and Rubinstein
[15], to obtain the following relations for G(r) for both
D = 3 and 2. Specifically, for equilibrium hard spheres
(D = 3), we find

3.0 G(r) = ap + at/r + a2/r, r~ 1, (10)
where the coefficients ao, a&, and a2 are given by

2.0
ao=-

~ ]+@+@2—@3

(] —4)3

1 + 4$gf(1) ~

1.5

I

0.5 1.0

@(3/2 —4@—3)
2(] —4)3

3P —4
2(, ~) + 2(1 —3$)gf (1) ~'

(12)

FIG. 3. Upper bound on A of Theorem 3 vs packing fraction
P for several D
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Here pf = 0.49 [24], @, = 0.64 [21], and gf(1) = (1—
@f /2) /( 1 —@f)

In the case of equilibrium hard disks (D = 2), we find

G(l ) = a0 + a1/r, r~1, (14)

where the coefficients ap and a& are given by
1+0.128$
(I-0)'

Qp 4c —4f2gf(1) ~
(15)

—0.564@
(I —4)2 '

—gf(1) ~ ~ +
(16)

(] —4)'
1 + 8P(1 0436$), 0 P @f,( (

848f (1)(4. 4f)'— (18)

Figure 1 depicts our prediction (thin solid line) of the
mean nearest-neighbor distance A for equilibrium hard
spheres (D = 3) versus the packing fraction P. Our pre-
diction is seen to be in excellent agreement with available
simulation data (open circles) [25]. In the limit P ~ @, =
0.64, our prediction of A correctly goes to unity, in contrast
with the prediction of Ref. [15] in which A does not go to
unity until P 1. Included in the figure are the bounds of
Theorems 1, 2, and 3. The upper bound of Theorem 1 is
very sharp for packing fractions between freezing and ran-
dom close packing, becoming exact in the limit @

In Fig. 2 we show our prediction of the mean distance
A for hard disks (D = 2) versus the packing fraction @.
Our prediction of A again correctly goes to unity in the
limit that @ ~ P, = 0.82. The figure includes the upper
bounds of Theorems 1, 2, and 3.

Finally, we note that the methods and results described
here can be extended to treat hard spheres with a
polydispersivity in size.

The author is grateful to J. Quintanilla and D. Coker
for their help in performing 1D RSA simulations. This
work was supported by the Department of Energy, OBES.

Here pf ——0.69 [24], c/, = 0.82 [21], and gf(l) = (1—
0.436@f)/(1 —@f) .

Note that when r = 1, both expressions (10) and (14)
@ in the vicinity of @, are consistent with the asymptotic
relation (10) with a critical exponent s = 1.

In the special case of an equilibrium ensemble of
particles, bound (2) of Theorem 1 can be written explicitly
for D = 3 and 2 using the aforementioned approximations
for G(1). For D = 3, using (2) and (10), we find

(I-0)'
24$(1 —P/2) ' @ @f'

(17)' + 24~.,(1)(~, ~,)-
For D = 2, using (2) and (14), we have
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