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Monte Carlo Simulation and Global Optimization without Parameters
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We propose a new ensemble for Monte Carlo simulations, in which each state is assigned a statistical
weight 1/k, where k is the number of states with smaller or equal energy. This ensemble has robust
ergodicity properties and gives significant weight to the ground state, making it effective for hard

optimization problems. It can be used to find free energies at all temperatures and picks up aspects
of critical behavior (if present) without any parameter tuning. We test it on the traveling salesperson
problem, the Edwards-Anderson spin glass, and the triangular antiferromagnet.

PACS numbers: 02.70.Lq, 02.50.Ng, 02.60.Pn, 64.60.Ak

The method of Monte Carlo simulation has proved
very useful for studying the thermodynamic properties
of model systems with moderately many degrees of
freedom. The idea is to sample the system's phase
space stochastically, using a computer to generate a series
of random configurations. We take the phase space to
consist of N discrete states (with label i), though the
method applies equally to continuous systems. Often only
a tiny fraction of the phase space (the part at low energy)
is relevant to the properties being studied, due to the
strong variation of the Boltzmann weight exp( —PE;) in
the canonical ensemble (CE). It is then helpful to sample
in an ensemble (with relative weights w; and absolute
probabilities p, = vv;/g, w, ), which is concentrated on
this region of phase space. The Metropolis algorithm [1]
samples directly in the CE, and is good at determining
many physical properties (with the notable exception of
the free energy). The price to be paid for this is that
successive configurations are not independent (typically
they have a single microscopic difference), but instead
form a Markov chain with some equilibration time t,q(vv;).

We may distinguish two important characteristics of
a Monte Carlo simulation: its ergodicity [measured by
t, ( q)]vvand its pertinence [measured by N, (w;; I), the
average number of independent samples needed to ob-
tain the information I that we seek]. We should choose

so as to minimize the total number of configura-
tions that need to be generated, which is proportional to
t,q(vv;)N, (w;; I). It is easy to specify an ensemble which

would yield the sought information if independent sam-
ples could be drawn from it, but an ensemble with too
much weight at low energies may become fragmented
into "pools" at the bottoms of "valleys" of the energy
function, and so have a large equilibration time. For
example, it is well known that at low temperatures the
Metropolis algorithm can get stuck in ordered or glassy
phases. Ergodicity may be improved by sampling instead
in a nonphysical ensemble with a broad energy distribu-
tion, which allows the valleys to be connected by paths
passing through higher energies [2—4]. A weight assign-
ment leading to such a distribution cannot in general be
written as an explicit function of energy alone; rather it
is an algorithm s purpose to find this assignment, which
then tells us about the density of states p(E) This rever-.
sal (starting with the distribution and finding the weights)
of the usual Monte Carlo process can be achieved us-

ing a series of normal simulations, adjusting the weight
~; after each run so that the resulting energy distribution

p, (E) converges to the desired one. Although one might
need more samples from such a broad energy ensemble
(BEE) than from a particular CE in order to find prop-
erties relating to that CE, it is possible for a single BEE
simulation to provide information on properties over a
range of temperatures. BEEs are also helpful for finding
free energies [5] (since relative normalizations can be de-
termined only for overlapping distributions [1,6]) and for
sampling across regions of negative heat capacity in the
vicinity of first-order phase transitions [7].
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The energy distribution used by a BEE algorithm is a
free parameter [8], and is often taken to be uniform [this
was called the "multicanonical ensemble" (MCE) by Berg
and Celik [2]]. It would, however, be natural to look
for an optimal most general distribution, i.e., one with
the best worst-case performance in terms of ergodicity
and pertinence. We will consider only monotonically
decreasing weight assignments w;, implemented using the
Metropolis scheme of accepting a transition i j with
probability min(w, /w;, 1). Our proposal is to use the
ensemble with weight

correlation length. To obtain (2), we first note that uniform
sampling of the entropy leads to smooth (i.e. , at least once
differentiable) sampling of the energy, at least in systems
or regimes where the heat capacity and temperature are
strictly positive, since

dpi'(E) 1

dE T2C

The 1/k ensemble may be expressed as a linear combina-
tion of canonical ensembles (in the thermodynamic limit):

w; =1/k;, P1/k PCE(T(E))io 1/k(E)dE

where k, is the number of states with energies up to
and including E;. This ensemble has the property that
log(N)N, independent samples from it convey as much
information, concerning any property, as N, independent
samples from any rival ensemble [9] (the factor logN,
which is a measure of the ensemble's worst-case perti-
nence, is smaller for this ensemble than for any other). In
particular, of order logN independent samples from this
ensemble are sufficient both to find the ground state and
to determine the normalization of the density of states.
While the best worst-case ergodicity is probably obtained
by sampling at infinite temperature, this is useless in terms
of pertinence. We expect reasonable ergodicity for the
1/k ensemble since if we require a rival ensemble to as-

sign an equal probability to some state, then its transition
rates from this state may exceed those in the 1/k ensemble
by a factor of at most log¹ In contrast, the equilibration
time for uniform energy sampling may be made arbitrarily
large by choosing a suitably unreasonably reparametrized
Hamiltonian H' = f(H), where f(H) is a monotonically
increasing function (the 1/k ensemble is invariant under
such operations).

The 1/k ensemble is equivalent to uniform entropy
sampling [i.e., p~tt, (E) ee dS/dE —= 1/T(E)] since for prac-
tical purposes the entropy S is given by S(E,) —logk;.
Like the CE, it has a sensible thermodynamic limit in that
the relative weight of states with a single microscopic dif-
ference remains of order unity as M ~, where M is the
system size. However, whereas in the CE fluctuations in
intensive quantities such as energy density typically go to
zero like M 't2, in the 1/k ensemble they are independent
of M, with the result that the 1/k ensemble is non-self-
averaging even for simple systems such as the ferromag-
netic Ising model. For example, if the physical system
has a second-order phase transition at some temperature
T„ this will be rejected by a power law contribution to
the spin-spin correlation function in the 1/k ensemble [10],
with a new exponent

pcE(T)p & p (T)dT, (4)

where E is the normalized energy and p represents any
probability assigned in an ensemble, since relative Auctua-
tions in the CE go to zero in the thermodynamic limit,
Close to the critical energy [letting t = (T —T,)/T] we
find

o"(E) ' if E ~ E".;„,
~ (E)-' if E ~ E",„,

io gati (t) —t

where n is the critical exponent describing the divergence
of the heat capacity. Under a real-space renormalization
with scale factor b, p&tk(t) is carried by the liow (t
b'~ t, where v is the exponent describing the divergence
of the correlation length) away from the fixed point,
and so reduces by a factor b ' ~~ . Thus there is
a contribution to G~tk(r) which, as in the canonical
critical ensemble, scales under renormalization group
transformations, though with an extra factor of b
This reflection of critical properties (which normally
require parameter tuning) in the 1/k ensemble shows
that it in some sense exhibits (by means of nontrivial
probability distributions) possible behaviors of the system
over all temperatures.

In principle, 1/k sampling may be implemented by an
algorithm whose only parameters [11] are the number of
Monte Carlo steps to use at each stage of the convergence
process (which should be enough for equilibration to have
occurred, and might be determined by the algorithm).
Specifically, we may represent the nth approximation
p'(E) to the density of states as a set of delta functions
and use the recurrence

g„p)„6(E—E; )/w,
"+ '

io""(E) =
Xsamples 1/wi

with

In spite of this, the correlation function (determined by
spatial average) for a state drawn from the 1/k ensemble
is likely to be exponentially decaying, with a random

where o "(E) = f ' p" (E)dE is the integrated density of
states and o'(E) is an extrapolation of o"(E) below the.
lowest sampled energy E";„. Note that when sampling
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a continuous space, one should use w,
" = [o."(E) +

0 ff t] ' in order to make the sampled entropy range fi-
nite. cr"(E) may be evaluated in order logNq steps, where
Nz is the number of delta functions used to represent p"
(memory constraints may limit Nq so that some group-
ing procedure is needed for the delta functions). We have
also found it useful to represent p" (E) as a histogram and
to compute and store the bias function w; before each run.
One requires only that the histogram is fine enough to re-
solve variation in p(E). Uniform energy sampling, in con-
trast, needs a specific choice of histogram, which must be
coarse enough to have good statistics. In I/O sampling,
Eq. (7) automatically interpolates as finely as permitted
by the data, short of curve fitting. However, curve fitting
is helpful in determining o."(E), since with each run the
range of energies being sampled increases to cover ener-
gies where the predicted er(E) used in (7) is not wrong by
a large factor. The first run may use w, = const, which
is likely to lead to progressively increasing equilibration
times in the following runs as the sampled energy range
extends further down.

The improved ergodicity of BEEs makes them attrac-
tive for use in hard optimization problems [3,4]. While
their applicability may be similar to that of simulated an-
nealing (see, e.g. , [12]), their behavior differs in that they
offer "open-ended" improvement, since they never com-
mit to a particular valley, but continue to search for better
solutions. They also dispense with the need for a cool-
ing schedule, which is a crucial parameter for simulated
annealing algorithms. Although a "cautious" BEE algo-
rithm may spend most of its time visiting highly nonopti-
mal configurations, this could be offset by using parallel
computation, such as one might anticipate being readily
available in the future (equilibration time, on the other
hand, is a basic constraint on an algorithm's performance).

Our first test of I/O sampling is a 100-city traveling
salesperson problem (see, e.g. , [13]),with moves consist-
ing in segment transport or reversal, following [14]. Fig-
ure 1 shows o45(E), where e.ach run was continued until
2 X 106 transitions had been accepted, and (7) was used
with the trivial extrapolation o."(E ( E";„)= o'(E",„)/2.

An additional run was conducted starting with a ran-
domized configuration but using the previously obtained
density of states; Fig. 2 shows the length of the best-so-far
tour as a function of the number of cost evaluations [which
we consider to be more relevant than computer time since
it is more characteristic of an algorithm and since some op-
timization problems, e.g. , protein folding (which has been
studied using the MCE [15]),may involve expensive cost
calculations]. This should be regarded as an upper limit
for the performance of I/O sampling in that not all of the
45 iterations of (6) could be eliminated by extrapolating
the density of states, and as a lower limit in that no paral-
lelism was used.

If we know N, then the absolute value of p";„provides
a useful measure of progress during global optimization,
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since N p', „serves as an estimate for the number of
states at or below the lowest energy sampled (assuming
ergodicity). In this way, using runs of 16 X 106 accepted
transitions on the problem instance shown in Fig. 1, we
obtained a ground state entropy of 0.15 ~ 0.15 bit, with a
variance of 0.6 bit.

In order to compare I/O sampling with the multi-
canonical ensemble, we performed simulations of the
Edwards-Anderson model with Ising spins s; = ~1 and
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FIG. 2. Length of the best-so-far tour as a function of the
number of cost evaluations E" for a particular run. Among
10 such runs, the number of cost evaluations required to find
the optimal tour varied between -2 X 10 and -64 x 10 .
The plateaus are due to excursions back up to nonoptimal
configurations.
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e = L/L.„
FIG. 1. Integrated density of states for the archived traveling
salesperson problem "kroA100" [18,19]. Normalization is with
respect to the established optimal tour length L,p„as listed in
the archive. The dashed line shows p;„= 2/99. Inset: the
optimal tour.
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nearest-neighbor interactions J;, = ~I (with XJ;, = 0),
on a 12 X 12 square lattice with periodic boundary condi-
tions. Figure 3 shows the energy visitation densities H(E)
and the calculated entropy, s(E) = log2 + log[sr(E))/12,
for one realization. For nine realizations we computed the
ergodicity times in sweeps (MC steps per spin), following
[2]. We found r;/t. to vary between 1199 and 19512,
with median 2025, while rt/k/1McF was more sharply
peaked at 0.69 ~ 0.04. The ground state entropies were
s(Eo) = 0.080 ~ 0.019 nat per spin.

The last application reported here is a simulation of a
regular system with frustration, the triangular antiferro-
magnet, on a 48 X 48 parallelogram with periodic bound-
ary conditions. Using five runs of 7.4 X 10~ sweeps, we
obtained a ground state entropy of 0.32320, with a vari-
ance of 0.00015, which is consistent with the exact bulk
value [16]of (2/vr) fo log(2 cosa') des = 0.32307.

These simulations show that I//~ sampling has signifi-
cant advantages over existing techniques. For the travel-
ing salesperson problem it found the global optimum, its
only parameter being the number of iterations to use. Lee
and Choi [17] have obtained good results for large scale
traveling salesperson problems using a "multicanonical an-
nealing" algorithm which is based on the MCE, but con-
strained to a certain energy range which is then "annealed. "
%'hile this approach is less greedy than simulated anneal-
ing, we believe that ergodic algorithms will have a higher
probability of finding the global optimum in the limit of
many samples or of much parallelization. I/O sampling
may, however, benefit from being truncated above some
fixed energy, provided this isn't so low as to compromise
ergodicity. The results for the spin glass show that I/)t
sampling has faster equilibration and more weight for low-
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FIG. 3. Results for simulations using 6.4 X 10 sweeps on
one realization of the 12 X 12 Edwards-Anderson spin glass.
(a) Histogram H(E) of the energy visitation density in the 1/k
ensemble and in our implementation of the MCE following [2].
(b) The entropy per spin for the same system.

lying states than the MCE, though it would be worthwhile
to continue this comparison to larger systems. It would
also be interesting to compare the variance of the ground
state entropy results for the triangular antiferromagnet with
that obtained by other methods.

I/O sampling may also be useful for determining the
functional form of a density of states, since it is com-
pletely impartial on account of its reparametrization in-
variance. Unfortunately, the equilibration times of BEE
algorithms are rather long, going as M in the best case
and as more than M3 for the Edwards-Anderson spin glass
[2]. While BEE algorithms may be unnecessarily cautious
for studying well-behaved systems when free energies are
not required, the slower equilibration for the spin glass
probably reflects the intrinsic difficulty of this problem.
We suggest that I/O sampling may be especially useful
for obtaining complete and reliable information on the
properties of relatively small systems, since it has, among
a large class of ensembles, the most general applicability
in terms of the number of independent samples needed,
combined with robust ergodicity properties and a mini-
mum requirement for input from the user.
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