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Collision-Stable Waves in Excitable Reaction-Diffusion Systems
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We discuss the interaction of stable pulse solutions modeling reduction waves in the Belousov-
Zhabotinsky reaction in a spatially one-dimensional reaction-diffusion system. We find that in the range
of parameters close to a subcritical Hopf bifurcation the counterpropagating pulses do not annihilate in a
collision but emerge after the collision with a size and shape unchanged compared to those well before
the collision. Under similar conditions these pulse solutions are reflected at zero-llux surfaces ("echo
waves").

PACS numbers: 82.40.Bj, 03.40.Kf, 52.35.Sb

The discovery of solitons in integrable equations in
Hamiltonian or purely dispersive systems [1]has initiated
extensive research, cf. [2,3]. The question whether soli-
tonlike behavior (we consider the definition of the soli-
ton used in applied science, i.e., as a solitary wave which
asymptotically maintains its shape and velocity after a col-
lision with other solitary waves, cf. [4]) can also be ob-
served in strongly dissipative systems was posed a long
time ago and answered partially positively [5,6].

Structurally stable pulselike solutions in one and two
spatial dimensions were observed in the quintic complex
Ginzburg-Landau equation describing the envelope of
wave amplitudes in the neighborhood of a subcritical
Hopf bifurcation by Thual and Fauve [7,8], and the
connection with the nonlinear Schrodinger equation limit
possessing a soliton solution was also discussed. The
interaction of such localized pulselike solutions was
also studied numerically by Brand and Deissler [9,10].
They have shown that the counterpropagating pulses in
this situation can either mutually annihilate or they can
interact so that they emerge after the collision with a size
and shape unchanged compared to those well before the
collision.

Most experimental studies with excitable pulse waves
in chemical systems were performed with the Belousov-
Zhabotinsky (BZ) reaction [11]. Two basic types of ex-
citable waves may develop in the BZ reaction mixture
depending on reaction conditions —reduction and oxida-
tion waves [12]. In recent experiments with the reduction
ferroin-catalyzed waves in the BZ reaction the range of
concentrations where stationary propagation of reduction
waves occurs was determined [13]. It was also observed
that the reduction and oxidation pulse waves do not al-
ways annihilate in the course of collision, but form target
patterns generating new pulse waves [14].

Recently it was also shown that the behavior of the
amplitudes of oscillations close to the Hopf bifurcation
point in the BZ reaction can be described by means
of the Stuart-Landau equation with the values of the
parameters evaluated experimentally for the three most
important components including HBr02, Br, and the
redox catalyst [15].

BC& 8 C&.

dt c3P
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supplemented by a set of appropriate boundary and initial
conditions, where the symbols d, , c, , and s, denote
diffusion coefficient, concentration, and overall net source
kinetic term of the jth component, respectively, j is the
spatial coordinate, and t is time.

The simplified reaction scheme and mathematical
model considered in this Letter are based on a recently
improved Oregonator-class model [16] of the BZ reaction
valid for both cerium and ferroin catalyst. The concen-
trations X, Y, U, and Z of the four species HBr02, Br
HBr02", and Fe(phen)3

+ are the components of the
reaction rates, and the source terms s, for these species
are given by the relations

sx = —k2hpXY + k3hpAY —2k4X —k5hpAX

+ k 5U + k6UW —k 6XZ,

sy = —k2hpXY —k3hpAY + qkgR + k9B,

s U
——2(k5 hoAX —k —5 U ) k6 UW + k —6XZ,

sz = k6UW —k —6XZ k7BZ + k —7hpRW

(2)

The concentration of the reduced form of the catalyst,
W = [Fe(phen)s ], is computed from the relation Z +
W = C, where C is the total catalyst concentration. Con-

In this Letter we shall use the current version of the
kinetic model of the BZ reaction proposed by Zhabotin-
sky et al. [16], which describes well spatial profiles
and propagation of both oxidation and reduction waves
[14,16]. We shall present examples of simulations where
the solitary reduction waves not only annihilate each
other in the head-on collision and decay as is most often
observed in excitable reaction-diffusion systems [17,18],
but also are reconstructed after the collision (solitonlike
behavior) and are reflected on zero-fiux surfaces (echo
waves).

The reaction-diffusion system with Fickian diffusion in
one spatial dimension can be described in the form
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TABLE I. Model parameter values.

Parameter

(M 2 ')
k3 (M ~s ')
k4 (M 2s ')
k5 (M 2s ')
k, (M-' s-')
dHB~o (10 ' cm s ')
ds, — (10 ' cm's ')
g
Ap = [NaBrO&]p (M)
C (M)
[H ](M)

Value

2 x 10'
12.0
3 x10'
150
4.2 x 10'
2.0
2.084
0.467
0.358
0.005
0.35

Parameter

kp(M 's ')
k, (M-' s-')
k8/k 7 (M )
k7kg/k, (M s ')
k, (s ')
dnB, o + (10 cm s ')

hp = 0.004 + 0.96[H+] + 0.314[H+]2
k4 = k4(1 + 0.87hp)
KHB o3 = 0.2 + 7.0hp
W = W, [H ]/(r„,„„+[H ])

Value

1 x 10'
3.0
1 x 10-'
1x10'
6x10'
1.6
0.603

centration of the brommalonic radical R = [BrMA. ] is
expressed from the quasi-steady-state approximation

R(Z, W) = k7BZ/(k —7h(jW + ks) .

The symbols A and 8 denote the concentrations of HBr03
and brommalonic acid, respectively, ho is the Hammet
acidity function, and q is the stoichiometric parameter.
The values of reaction rate coefficients k;, stoichiomet-
ric parameter q, diffusion coefficients d;, initial reactant
concentrations, and several empirical relations are sum-
marized in Table I.

Let us discuss first the situation around homogeneous
solutions, where the diffusion terms in (1) are neglected.
A typical situation in the parameter space close to the sub-
critical Hopf bifurcation is represented in Fig. 1(a), where
the unstable limit cycle (ULC) is nested between the sta-
ble focus (SF) and the stable limit cycle (SLC). The de-
picted minimal and maximal values show the amplitude
of oscillations on the branch of periodic solutions.

The projection of the concentration phase space into
the Z-X plane is shown in Figs. 1(b) and 1(c) for B =
0.05 M. A perturbation of the SF which will bring the
trajectory outside the basin of attraction bounded by the
unstable limit cycle will cause the system to oscillate
with large amplitude oscillations. A spatially distributed
reaction-diffusion system (1) stimulated at one point
from the homogeneous spatially uniform SF state by a
superthreshold perturbation responds by generation of a
pulse wave with the wave back-damped into the original
steady state.

In most experimentally observed situations [14] the
head-on collision of two reduction waves causes their
annihilation similarly as in the case of oxidation waves
[19]. Such a situation is depicted in Fig. 2. The chosen
value of the parameter 8 = 0.05 M is located inside the
region of coexistence of stable steady state and stable limit
cycle. We can observe two stationary propagating stable
pulses and their annihilation in the course of collision.
In contrast to the situation in the homogeneous case
[cf. Figs. 1(b) and 1(c)] where the oscillating solution is
asymptotically stable, diffusion drives the refractory tail
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FIG. 1. (a) Dependence of the value of Z (catalyst concen-
tration) on the parameter B, homogeneous solutions of (1)
with source terms (2) close to the subcritical Hopf bifurca-
tion. SF—stable focus, UF unstable focus, HB—Hopf bi-
furcation point, SLC—stable limit cycle, ULC —unstable limit
cycle, and LP—limit point on the branch of periodic solutions.
Projection of the concentration phase space into (b) Z —logX
and (c) Z-X plane (detail) for 8 = 0.05 M. Part of the trajec-
tory inside the attractive basin of the stable focus (SF) is shown
in (c).

of the propagating pulse to stable focus, and thus no
oscillations in the variable Z are observed.

The "solitonlike behavior" in the course of collision
of two asymptotically stable reduction waves was found
in the parameter region close to the subcritical Hopf
bifurcation (B = 0.0504 M) and is depicted in Fig. 3.
The waves nearly disappear for a short time after the
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FIG. 2. Stationar ro a ay p pagating reduction waves annihilatin
each other after the head-on collision, B = 0.05 M.

FIG. 4. Echo waves reflected on im erm
surface, B = 0.05 M.
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FIG. 6. Solitonlike interaction of two- and single-pulse coun-
terpropagating reduction waves, 8 = 0.0504 M.

The "solitonlike" collision of two pulses propagating
from the left with a single pulse propagating from the
right is shown in Fig. 6. The pulse waves reappear after
interpenetration and continue propagation in the original
directions. This together with Fig. 3 confirms that the
waves are not simply rejected in the course of collision.
A similar observation was made by Brand and Deissler in
the simulations of the interaction of counterpropagating
one- and two-particle states in the coupled envelope
equations [9].

Several experiments with waves in chemical systems
recently reported observations which could be interpreted
on the basis of the above described behavior [22—24].

In the examples of the solitonlike and echo phenomena
discussed in this Letter we did not need to invoke an
assumption of the heterogeneity of the reaction medium.
However, the proper neighborhood of subcritical Hopf
bifurcation seems to be the only necessary condition for
the observed reexcitation after collision. Similarly as in
the above discussed examples of collision-stable waves
in the Ginzburg-Landau (envelope) equations [7—10] it
seems necessary that the model has to also possess proper
dynamic properties which create the reexcitation in the
course of the collision. The process of reexcitation of
reduction waves in the course of collision can also be
connected with the nonmonotonicity of the spatial profile
at the back of the wave. The attempts to model collision-
stable behavior in the case of oxidation waves failed until
now because of the long and monotonic refractory tail of
these waves.

[1]

[2]

[3]

[4]

[5]

[6]
[7]
[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[18]

l 19]
[20]

[21]

[22]

[23]

[24]

N. J. Zabusky and M. D. Kruskal, Phys. Rev. Lett. 15, 240
(1965).
A. C. Newell, Solitons in Mathematics and Physics
(SIAM, Philadelphia, 1985).
P. G. Drazin and R. S. John, Solitons: An Introduction
(Cambridge Univ. Press, Cambridge, 1989).
A. C. Scott; F. Y.F. Chu, and D. W. McLaughlin, Proc.
IEEE 61, 1443 (1973).
H. C. Tuckwell and R. M. Miura, Biophys. J. 23, 257
(1978).
H. C. Tuckwell, SIAM J. Appl. Math. 39, 310 (1980).
O. Thual and S. Fauve, J. Phys. (Paris) 49, 1829 (1988).
S. Fauve and O. Thual, Phys. Rev. Lett. 64, 282 (1990).
H. R. Brand and R. J. Deissler, Phys. Rev. Lett. 63, 2801
(1989).
R. J. Deissler and H. R. Brand, Phys. Lett. A 146, 252
(1990).
A. N. Zaikin and A. M. Zhabotinsky, Nature (London)
225, 535 (1970).
M. L. Smoes, in Dynamics and Synergetics Systems, edited
by H. Haken (Syringen, Berlin, 1980), p. 80.
P. Kastanek, M. Marek, and S.C. Miiller, J. Phys. Chem.
98, 7452 (1994).
P. Kastanek, J. Kosek, D. Snita, I. Schreiber, and
M. Marek, Physica (Amsterdam) D (to be published).
J. Kosek, P. G. Sorensen, M. Marek, and F. Hynne,
J. Phys. Chem. 9S, 6128 (1994).
A. M. Zhabotinsky, F. Buchholz, A. B. Kiyatkin, and I.R.
Epstein, J. Phys. Chem. 97, 7578 (1993).
A. T. Winfree, The Geometry of Biological Time

(Springer, New York, 1980).
Oscillations and Travelling Waves in Chemical Systems,
edited by R.J. Field and M. Burger (Wiley, New York,
1987).
P. M. Wood and J. Ross, J. Phys. Chem. 82, 1924 (1985).
H. Sevcikova and M. Marek, in Bifurcation and Chaos,
edited by R. Seydel, F.W. Schneider, T. Kupper, and
H. Troger (Birkhauser, Basel, 1991).
V. Petrov, S.K. Scott, and K. Showalter, Philos. Trans. R.
Soc. London A 347, 631 (1994).
M. Bar, M. Eiswirth, H. -H. Rotermund, and G. Ertl, Phys.
Rev. Lett. 69, 945 (1992).
S. Kai and H. Miike, Physica (Amsterdam) A (to be
published).
K.J. Lee, W. D. McCormick, Q. Ouyang, and H. L.
Swinney, Science 261, 192 (1993).

2137


