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Chaotic Landau Level Mixing in Classical and Quantum Wells
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We analyze the 3D motion of a charged particle between parallel planar potential barriers with a
magnetic field applied at an angle 0 to the barriers and an electric field normal to the barriers. A
nonlinear map is derived for the classical system which gives analytic conditions for the occurrence
of a chaotic energy exchange between the cyclotron and longitudinal motion as a function of 0 and
other system parameters. This energy exchange can lead to a population of very high Landau levels.
Quantizing this problem suppresses energy exchange up to a critical angle determined by the localization
transition.

PACS numbers: 73.20.Dx, 05.45.+b, 71.55.Jv

Several recent experiments in semiconductor hetero-
structures have studied the tunneling current of electrons
through planar potential barriers in a magnetic field which
is tilted at an angle 0 with respect to the normal to the bar-
riers [1,2]. When a variable voltage is applied across the
barriers these systems exhibit oscillations in the I-V char-
acteristic which were found to have a strong sensitivity to
the tilt angle 0, magnetic field B, and driving voltage AV.
Theoretical analysis has shown that tilting the field induces
a classical transition from integrability (for O = 0) to chaos
[1,2]; Fromhold et al. [1] showed that the Gutzwiller peri-
odic orbit theory of the density of states oscillations [3]
could account for the dominant features of resonances in
the I-V curve in the strongly chaotic regime. This work has
drawn attention to a new dynamical system for the study of
classical and quantum chaos which should have other ex-
perimental signatures in semiconductor quantum wells and
experimental realizations outside of solid-state physics. It
therefore seems worthwhile to analyze the dynamics of this
system from the point of view of the global phase space
structure and obtain the relevant parametric criteria for the
onset of chaos in different regimes. Since the real-space
motion is three dimensional and depends on a large number
of parameters (O, 8, 5V, F„the initial kinetic energy, and
d, the distance between the barriers), it is not obvious that
this system can be reduced to familiar models which have
been previously analyzed. Below we will show that, in
fact, the transition to chaos in this system can be described
by a two-dimensional map with strong similarities to the
Fermi acceleration model [4] in the limit AV ~ 0, and the
Haake "kicked top" [5] and the Chirikov standard map [6]
for AV » E;. In both limits it is possible to obtain para-
metric conditions for the onset of chaos which agree with
numerical simulations and may be tested experimentally.

The basic physics of the classical motion is the fol-
lowing. Between collisions with the walls the particle
executes cyclotron motion around the magnetic field di-
rection and either ballistic (hV = 0) or uniformly accel-
erated motion along the field direction; hence the motion
is integrable. If the field is not tilted, collisions do not
mix the cyclotron and longitudinal motion and integrabil-

ity is maintained. Tilting the field causes each collision to
mix longitudinal and cyclotron motion and allows energy
exchange between these degrees of freedom. The direc-
tion and magnitude of the energy exchange depend in a
sensitive manner on the phase of the cyclotron motion at
the time of collision. Hence narrow chaotic layers arise
for arbitrarily small tilt angles; however, for large energy
exchanges to occur from repeated collisions the tilt an-
gle must exceed the Kolmogorov-Arnold-Moser (KAM)
threshold for global chaos. Determining this chaos thresh-
old is the central question for the classical analysis. We
find that for typical parameter values the chaos threshold
occurs at small tilt angles; it follows that above thresh-
old the energy transfer will occur diffusively (i.e., will
require many collisions). In this case quantum dynami-
cal localization effects can suppress the energy transfer
even though it is allowed classically [7,8]. For the quan-
tum system the conditions for this suppression become the
key question. If global chaos is generated then it becomes
possible to transfer huge amounts of energy from the elec-
tric field to the cyclotron motion. Although this process
is inhibited in quantum wells due to optical phonon emis-
sion, one can imagine experiments with electron beams in
vacuum which would not have this limitation.

We define our coordinates such that the (y, z) plane is
the plane defined by the electric field e = ez and magnetic
field B, while the planar barriers are parallel to the (x, y)
plane at z = 0, d. B is tilted with respect to e by a rotation
angle 0 around the x axis. Choosing the vector potential
A = ( By cosO + Bz s—inO, O, O) the Hamiltonian is

(p, —By cosO + Bz sinO) P, p,H = +, + ', —ez,
2m 2m 2m'

where p; are the canonical momenta and we used atomic
units so that for [1,2] I"' = 0.067. The cyclotron fre-
quency is cu,. = B/I* where B is measured in terms of
B, = 2.35 X 10 T.

The Hamiltonian of Eq. (1) is independent of x,
therefore p is conserved and can be eliminated by substi-
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tution y ~ y
—p /Bcos9. However, p 4 m"v, so that

motion is not free in the x direction and the actual three-
dimensional orbits may look quite complicated [1].
Nonetheless the underlying dynamics is that of a con-
servative system with two degrees of freedom [1,2].
Between collisions the electron motion is integrable and
we analyze it in the frame (y', z') rotated by 0 around x
axis so that the z' axis is parallel to B. The z' motion is
then uniform acceleration in the electric field e cosO. The
motion in the (x', y') plane is still the cyclotron rotation
except that the center of the orbit is displaced by an
amount By' = —e sin8/m*cu2 which determines the drift
velocity in the x direction.

Collisions with the barriers reverse the sign of v, , it
is easily shown that this corresponds to a refIection and
rotation of the velocities vzf, vy~,

vz' COS20vz' + Sin20vyl,
(2)

vy~ = Sin20 vz~ + COS20 vy~, vx~ = v~~,

where the bar denotes the values of the velocities after
the collision. Here y', z' velocities are just the momenta
divided by m*, but v = —cu, (y' —By') is the velocity
in x' without the drift component [9]. Between collisions
separated by a time b, t the vector (v, , v~i) simply rotates
with frequency cu, accumulating a phase angle p = cu, At
while v, i will undergo uniform acceleration. The analysis
of the general case AV —E; is complicated, and so to
determine the chaos boundary we consider the limiting
cases AV » E; and AV « E;.

If AV » E; then it is very unlikely that the particle
will retain enough longitudinal energy on collision with
the barrier at z = d to return to z = 0, and almost all
trajectories collide repeatedly with the wall at z = d.
If 5V «E; then the z' motion is ballistic between
collisions which occur alternatingly between the two
barriers. In both of these limiting cases the magnitude
of the velocity vo, determined by the total energy Eo =
AV + E; = m*vo/2, is unchanged at collisions and the
map connecting the velocity vector at one collision to that
at the next simply consists of a product of two velocity
rotations, first by 20 in the (y', z') plane (the collision)
then by p in the (x', y') plane (cyclotron rotation). The
nonlinear evolution is just a sequence of many such
rotation pairs on the sphere of radius vo [10].

Consider first the case AV » E; in which the particle
collides many times with the barrier at z = d (so the
motion is as in an infinite triangular well). Then the phase
change due to the cyclotron rotation between collision
is p = 2',

m*vz'/ecosoc

+ Bp. The correction Bp is
due to the fact that the longitudinal motion is tilted with
respect to the barriers and so collisions occurring at z = d
do not occur exactly at z' = d/cosH. This correction
is small compared to the first term if 0 «1 or if the
first term is large; in this case it will affect the detailed
trajectories but not the parametric conditions for chaos.
Under these conditions we obtain the velocity change

between collisions
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FIG. 1. Phase portraits of Landau dynamics (1) in triangular
well (top) and Haake kicked top map (2), (3) (bottom) for
P = 9, 0 = 11', z = d; yo = vo/cu, cos8; the injection point is
at (0.05, —0.23); similarity becomes evident after a 90 rotation.

vzj = vz& vy& = COSp vyI + Sing v
(3)

v, f = —sinpv~i + cosrpv, i, p = P~,~/vocos0,

where P = 2', m*vo/e = 23~~co,gm* d/b, V'~2. The map
obtained by composing (2) and (3) becomes identical to
the kicked top map introduced by Haake [5]. Note that the
four external parameters (B, b, V, I', d) describing the sys-
tem at fixed 0 appear only through the dimensionless pa-
rameter P. This implies that the curves P = const define
the surfaces of constant classical dynamics in this 4D pa-
rameter space and more specifically that the transition to
chaos must occur along a parabolic boundary in the B-AV
plane. In Fig. 1 we show that the kicked top map does
reproduce the exact dynamics generated by Eq. (1).
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FIG. 2. Phase plane for the Haake kicked top (2) and (3) with
8 = 0.05, P = 10, near the critical regime K = l.

For large values of P a KAM transition to chaos
takes place for 0 « 1. In this case it is convenient to
represent the dynamics by the (v, , @) map which may be
approximated in the vicinity of a particular value of v,
v' by the Chirikov standard map [11],

v, ~
= v, ~ + 20rtvp sing, P = @ + Pu, i/vp, (4)

where il = (1 —v'~/vp)'t = (E,/Ep)'t, E, is the instan-
taneous energy in cyclotron motion, and @ is the total ac-
cumulated cyclotron phase. The chaos boundary for this
local standard map is given by K = 20pi1 ) 1, which
yields the following condition for chaos as an explicit func-
tion of all system parameters:

cp, ) AVEp/32m"d 0 E, . (5)
Poincare sections of the map (see Fig. 2) are in good agree-
ment with this estimate. For 0 « 1 but above the chaos
boundary energy exchange between the two degrees of
freedom occurs diffusively over many collisions requiring
a time to —P/cp, 9 .

Because of this slow relaxation, quantum effects can be
quite important for 0 « 1 and should lead to the suppres-
sion of diffusion due to localization [7]. In order to deter-
mine the localization length it is necessary to express the
map in terms of canonically conjugate variables [8]. In our
case the appropriate variables are the Landau level num-
ber n = E,/htv, and cyclotron phase @, and the resulting
quantum dynamics differs from the quantum kicked top
[5]. The classical diffusion rate per collision in these vari-
ables is Dt. = (An) /At = 80 n(nt. —n) (nt. = Ep/htp,
is the total number of Landau levels energetically accessi-
ble). The interesting (quasiclassical) regime corresponds
to DL ) 1. In this limit the localization length [7,8] is
given by sL = DL and increases linearly with n for n «
nt This g. rowth of $L with n prevents localization unless
the initial gL ( n, which can occur for sufficiently small

angles 0. The condition for delocalization then becomes

Dt, /n = 80~nL ) 1. (6)

Note here nI
' is setting the quantum scale and acts like

an effective h. When (6) is not satisfied localization
effects suppress the large energy exchanges predicted by
the chaotic classical dynamics and eigenstates are power-
law localized [8].

Now consider the case E; &) AV in which the parti-
cle moves ballistically along the field between alternate
collisions at g = O, d. The time between collisions is
At = d/v, cosO so that the cyclotron phase change is
p = tp, d t = cu,.d/v, cosO (where again we neglect the
small shift 6p). The free rotation given by (3) now has
a phase p = yvp/ ( v, ), controlled by a different dimen-
sionless parameter y = cv, d/vpcosO and v, = v, [10].
Again a local standard map of the form (4) may be ob-
tained, but now the phase change depends inversely on v,
just as in the Fermi acceleration model [4]. Since large
phase changes between collisions promote chaos there is
always a chaotic region of phase space as v, 0. As
above we may define a local chaos parameter near v,
v', K = 20yttvp/v'~. The requirement K ) 1 gives

cp ) (Ep —E ) /2m*d 8 E (7)

as the condition for chaos. This estimate is in agreement
with numerical simulations of the map. Note that (7)
differs from (5) only in the replacement 6 VEp ~ (Ep-
E,); hence in both cases only the combination o~, d8/m*
appears implying that the classical dynamics is invariant if
this quantity is kept fixed.

We now discuss the relation of this work to experi-
ments. For the quantum well systems AV » E; and
the classical dynamics is well described by the kicked
top map for angles 0 ( 15 and P ) 3 (Fig. 1). The
first experiments [1] explored the regime P ) 9 where
we find mainly hard chaos. However, the recent experi-
ments [2] study small enough 8 to be in the transition
region. With the experimental parameters d = 1200 A
and e = 6.5 x 10~ V/cm for AV = 1 V [12] we find

P = 6.2, nt = 45 at 8 = 10 T. The resonances at 0 =
0 correspond to the quantum well subband edges and
Landau index n = 0 (the emitter state). For tilt angles
0 = 27, 45' the data [2] show a doubling of the num-
ber of resonance peaks in a region of parameter space
bounded by a parabola h, V ~ tp, consistent with (5).
The electrons are injected from the n = 0 state of the
emitter whereas eh V —10~hen„so E, /Ep —10 ~. For
such small E, the dependence on 0 in Eq. (5) cannot
be used. However, analysis of the full dynamics (1)
shows that the transition to chaos occurs at P = 3.9 for
9 = 27 (Fig. 3) and P = 3.5 for 0 = 45 which give
parabolic boundaries in good agreement with the ob-
served peak-doubling boundary. For 0 ( 24 the experi-
mental data are more complicated with peak doubling
appearing and then disappearing as 8 increases. We find
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sponds to the case P = 0 and effective P ~ P cos6I[1 +
4sin P/(P cosO) ]'t /cos(8 —P). Our numerical simu-
lations confirm this result. The renormalization of P
with tit can be used in experiments to increase the effec-
tive values of P and reach values inaccessible at avail-
able magnetic fields and P = 0. The tilted electric field
leads to a drift along x with the average velocity (v ) =
e sing/(B cos9) that may be detected experimentally.
Varying p also changes the injection point in phase space
allowing a direct test of its inhuence on the resonance
spectrum without changing the effective P.

We acknowledge helpful discussions with G. Boe-
binger, H. Mathur, and R. Wheeler. Work at Yale was
partially supported by NSF Grant No. DMR-9215065 and
by ARO Grant No. DAAH04-93-G-0009.

FIG. 3. Same as Fig. 1(a) for 8 = 27', P = 3.8 near transition
to chaos via period doubling, small box at (—1,—1) shows
effective 6 for 5V = 1 V, 8 = 10 T; orbit injecting at z = 0
with E; = 0 has coordinates (0.33,—0.22). Inset shows the
lines of transition to chaos in (B[T],AV[V]) plane for 8 =
11',27', 45 with p = 6.5, 3.9, 3.5 correspondingly.

the transition to chaos in the region of phase space near
the injection point (which is calculated assuming E; = 0
at z = 0) is much more complicated with several bifur-
cations of the initial period-one stable island followed by
restabilizations of this island. For 0 = 11 the kicked top
map describes well the interesting region 3 ( P, and it
shows that the injection point first enters the chaotic sea
at P = 6.5 and then reenters the stable island near P = 9
(see Fig. 1). The transition to chaos at P = 6.5 roughly
bounds the region of resonant peak doubling in the spec-
trum but a more detailed connection with [2] will require
further work. Finally, the estimate nL = 45 at B = 10 T
indicates that localization effects may be observed, e.g. ,
in the parameter range d = 200 A. and B = 20 T.

Finally, we discuss the case 5V » E; (triangular
well) when the electric field e is tilted in the (y, z)
plane by an angle P with respect to z. In this case
by the change of variables y ~ y + m*e sintit/(B cosO)2
and Eo ~ Eo + m*e2 sin/2/2(B cosO)2 the problem is re-
duced again to the Hamiltonian (1) with an effective
electric field e ~ e cos(0 —P)/cosO. After all the sub-
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