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Critical Behavior near the Mott Transition in the Hubbard Model
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We introduce a systematic approach to analyze the low-energy behavior of strongly correlated
electron systems in infinite dimensions, and apply it to the metal-insulator transition in the half-filled

Hubbard model.

We determine the low-energy scaling functions of the metallic state, including the

single-particle Green function and dynamical spin susceptibility, as well as thermodynamic properties.
Comparisons are made with experimental data on transition metal oxides.

PACS numbers: 71.27.+a, 71.28.+d, 74.20.Mn

The interaction-driven metal-insulator transition is a
fundamental problem in condensed matter physics which
is fascinating because of its nonperturbative nature and the
emergence of new low-energy scales. Early ideas of Mott
[1], Hubbard [2], Brinkman and Rice [3] have recently
been put on a more quantitative footing by a mean-field
approach which is exact in the limit of large lattice coordi-
nation [4]. In infinite dimensions it is possible to construct
models which do not order magnetically down to zero tem-
perature irrespective of the proximity to the transition (see
below). Such a treatment is relevant to systems close to
the interaction-driven metal-insulator transition but have
not ordered magnetically. The approach to the Mott tran-
sition was found to be characterized by the vanishing of the
renormalized Fermi energy [5]. This small energy scale
makes it difficult to analyze the critical behavior.

In this Letter, we introduce a new projective self-
consistent approach for correlated electrons in large
dimensions. Using the separation of energy scales, we
obtain exact low-energy information about the critical
behavior on the metallic side of the Mott transition in
infinite dimensions. The divergent linear specific heat
coefficient vy, the local susceptibility yjoc(w), and the
single-particle spectral function, relevant for photoemis-
sion, are calculated. The ratio of the static xo.(0) to y
is found to approach a constant, yielding a generalized
Wilson ratio, while the low frequency yio.(w)/w, relevant
for NMR and neutron scattering, is O(y?). Finally, the
coefficient of the w? term in the imaginary part of the
self-energy diverges as y?; this is related to the observed
T? resistivity in the LaTiO5 system [6—8].

The Hamiltonian of the half-filled Hubbard model is
given by H = —(t/Nd) Sipo firfio + US(fifi =
—;-) (f,-ifl-l - %) where the hopping is scaled as t;; — t//d
[4]. In the limit of infinite dimensions, all local corre-
lation functions of the lattice model can be calculated
in terms of an Anderson impurity model [9] FHaym =
Sig exciocho + Xag Vil fhers+ He) + Ulnyy = 3) (np
— 5) provided that the bath dispersion €, and the
hybridization coupling V, satisfy a self-consistency con-
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dition which involves the density of states po(e) of the
noninteracting system. In order to make better contact
with physical systems in finite dimensions, for which the
bandwidth is finite, we consider the case of a semicircular
bare density of states, po(e) = (2/mD)\/1 — (e/D)? for

which the self-consistency equation has the simple form

2 2
Gliw) = M(iw,) = 3 —Ve/D~ (1)
T lw, — €
Here, G [ex, Vil (iwn) = — [E drelo™ (T, f, (1) X

FEO)aulen v is the impurity Green function which is
a functional of the parameters €, V, to be determined
self-consistently. We are interested in highly frustrated
lattices that have any magnetic transitions that might
occur suppressed to low temperatures; we thus study only
paramagnetic solutions. Note that for the fully frustrated
completely connected graph with ¢;; randomi in sign, the
density of states is a semicircle, there is no magnetic
order, and our results become exact [10,11].

Numerical and other approximate solutions [5,10-12]
of the self-consistent Anderson model have shown that
as the interaction strength U increases, the self-consistent
single-particle density of states, p(e) = —% ImG(e + i0),
develops a narrow peak about zero energy separated by
regions of low spectral density from peaks near +U/2
as shown in Fig. 1. At a critical value of U, U,, the
narrow peak appears to vanish [5], leaving a paramagnetic
insulating solution with a finite gap. Just below U,
there is a separation of energy scales such that p(e)
and the one-particle Green function can be decomposed
into a sum of a low- and a high-energy part as p(e) =
pL(e) + pfi(e) and G = G, + Gy. p'(e) contains all
states up to a cutoff intermediate between the low-
energy bandwidth, D, and U with spectral weight w =
Jdo p*(w). The upper and lower Hubbard bands, with
energies near =U /2, are represented by p. The self-
consistent equation (1) implies that the parameters {e;, V;}
can be separated into a low-energy set kK € L and a
high-energy set k € H; these we denote by {ef, V{} and
{el!,v/'}. This separation allows us to divide the set of
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FIG. 1. Schematic plot of the spectral functions of the con-
duction electrons and the impurity configurations, illustrating
the narrow low-energy and broad high-energy parts.

operators c¢; into a low-energy set, those having k € L,
and a high-energy set, those having k € H; we call them
cr, and cf, respectively. It should be noted that, here,
“k” is a dummy variable labeling the states in the bath of
conduction electrons of the Anderson model; it should not
be confused with the Bloch wave vector quantum number
of electrons in the original Hubbard model.

Just below U, w is small and D ~ wD < U, making
the problem numerically intractable. Our main idea
is to project out the high-energy states to obtain a
low-energy effective problem involving p’ only and
hence only one energy scale. This is in the same
spirit as Landau theory: The focus is on the low-energy
degrees of freedom represented conventionally by an
order parameter and here by p’, while the effects of
the high-energy degrees of freedom are contained in a
few coefficients. In our case, both these coefficients
and the minimization over the “direction” of the order
parameter—i.e., the shape of p’(e)—must be obtained
numerically.

We first separate the impurity Hamiltonian into three

parts as Ham = H, + H, + H, with
U 1 1 Lt
.7‘[,1 = E ng — 5 ngo— 5 + ka (Ckuf(7 + H.C.)
H ok

+ D el clycio, )
ok
analogous to the Hamiltonian of an Anderson impurity
in a semiconductor. H,, = Zi(, wD ékc,racka is the low-
energy conduction electron kinetic energy in terms of
rescaled variables & = €; /wD The hybrldlzatlon with
the low- energy electrons is H,, = JwDY, (CLzrfo'
H.c.) with ¢,, = Zk 2V,ck, the local low-energy opera-
tors with {cL,,,czg} = 1 and V, = V}//w D showing ex-
plicitly the perturbative nature of the hybridization with
the low-energy band.
The ground states of J{, are a spin doublet |o),
with energy Ej separated by a gap of order U from the

excited states. We can therefore perform a canonical
transformation to project out the excited states of JH, and
derive an effective Hamiltonian, 7, fff, which acts on the
low-energy Hilbert space {|o),} ® {states of the cf,}. If
the excited states were only the empty and the doubly
occupied site, this would be a Schrieffer-Wolff canonical
transformation [13]. To lowest order in w,

eff
3‘[L }[b - 4 ZCLUCLa'Xaa-
oo’

(a<0' |f0 f(r’lo->a
u<af|f,,, fola-)a) + const, (3)
where X,, = |o)..(c’| project onto the ground states of

H,. To the needed accuracy, the {V/, e/} are those of
the insulating solution of the infinite d Hubbard model
[14,15] at U., which can be readily obtained numerically
as the insulator has only one energy scale.

Because of rotational invariance, the matrix elements
in Eq. (3) reduce to a single number, I' = (] Iflﬁf;r
X | )a. We then have an intermediate coupling Kondo
problem with a single energy scale wD, exchange J =
—wD?T + O(w?), and Hamiltonian

H™ = 1{8)a - {8k + H, + const + O(w?).

(€]
with S, = %Zm,/ X,0'050 acting on the {|o),} and
Y = %ZQB Czal}a,BCLﬁ the local spin operator of the
low-energy “conduction electrons.”

The low-energy part of the impurity Green function GL
is now the time ordered Green function under FH;'
the canonically transformed f, operators of the orlgmal
Anderson model FH s; to lowest order in S, these are \/w
times the effective low-energy operators

DT
Fo’ = T[(X_(r—(r - X 2X70-”—CL70—:|- (5)

tru')CLU' -

The self-consistency condition requires that the Green
function of F under H ° G, equals that of c; un-

der H,,II;. In terms of rescaled frequencies i®, =
iw,/wD, w drops out and
L 52
- 4V . o~
M@ =3 ——— .~ Gulionl&a Vil (©
k.o n

yielding a closed set of Egs. (4)—(6) for low energies from
which the parameters {;} and {V,} have to be determined
self-consistently. These equations reduce the full problem
into a self-consistent problem for the low-energy sector
only; we call such a reduction procedure a projective
self-consistent approach. These self-consistent equations
are solved iteratively at zero temperature [14,16]. The
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Green functions and "' are approximated in terms of a
finite set of N — 1 conduction electron orbitals c;r,,, with
energy levels & and hybridization V;. The ground state
of HS™ on the resulting N-site cluster is obtained using
the Lanczos technique. The local Green function as well
as correlation functions are calculated using a continued
fraction expansion [16]. The projected self-consistency
condition can be best approximated by a y? fitting of
the Matsubara Green function 2 = Y o™ |G, (i@,) —
M,(i@,)|*> where Qu, and Q. are low and high
frequency cutoffs [14]. Here Q;, is determined by the
smallest pole of the continued fraction expansion of G,
and is reduced as N increases, while .« is chosen to be
large enough that the results do not significantly depend
on it.

We analyze the behavior to leading order in w. The
“high” frequency limit of G, = I1, yields the condition
1 = {F,Ft}) = 2I'2D2(3/8 — (S, - S1)1) + O(w) in the
self-consistent ground state of FH". This can be satisfied
for only one particular value of I'D and thus of U, thereby
yielding an exact condition for U,.

We have analyzed the low-energy problem defined
by the projective self-consistent equations (4)—(6) for
clusters of N =4, 6, 8, and 10 sites. We find that
the results have converged by N = 8. We determine
AL = (S'a . §‘L>L ~ —0.46, characterizing the intermediate
Kondo coupling nature at the critical point. From a self-
consistent numerical solution of the insulating state, we
determined I'(U). A low-order expansion for I' in powers
D/U [17] is also found to be good down to U.. Both
methods, when combined with A;, yield U, = 2.9. Just
below U, the energy of the metal El’g"’ can be shown
to be lower than that of the insulator Eg by noting that
dE,/dU = (nspns). Integrating this equation between
U. and U one finds that E} — E}! > 0 since the metal
has a greater double occupancy. This analytic argument
then establishes that U, is indeed the physical transition
at T = 0, and that the metal-insulator transition at zero
temperature is second order in agreement with earlier
numerical findings [15].

To obtain w(U), higher order terms in w must be
retained. An approximate calculation yields w « U, — U
and also E} — EY ~ (U. — U)*>. More generally, all that
is needed for this scenario to be correct is for a certain
coefficient—analogous to the coefficient of ¢* in Landau
theory —to be positive as U — U.. This is borne out by
a direct calculation, and is consistent with all the earlier
work on this problem.

Here we focus on ratios of physical quantities as
U — U for which only the lowest order in w is needed.
In the inset of Fig. 2 we show the single-particle spec-
tral function for N = 10. The Green functions as func-
tions of the scaled Matsubara frequency @, for N = 6,
8, and 10 are shown in Fig. 2, along with the rescaled
noninteracting Green function. The low frequency part of
the Green function improves systematically and remains
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FIG. 2. Imaginary part of the scaled low frequency Green

function G, versus the scaled Matsubara frequency &, for
system sizes N = 6,8,10 and for the noninteracting system
with a semicircular density of states. Inset: The single-particle
spectral function for N = 10 as function of @ with a broadening
6 = 0.01.

essentially unchanged for N = 8 and 10. At @, = 07,
the value of the scaled Green function at zero frequency
is determined by the low-energy self-consistency equa-
tion and is the same as that of the noninteracting Green
function, ImG(0*) = —2/D, unchanged by the interac-
tions as expected from Fermi liquid theory [4]. This
is a nontrivial check of the numerics. The scaled self-
energy 2,(i@,) is obtained by extracting from X(iw,) =
iw, — (D/2)*G(iw,) — G '(iw,) the terms with a singu-
lar dependence on w. For small @,, i.e., w, < wD,

S(i@,) = sgn(@,) [~ 1.7il@,] — i1.2(i@,)° + 0(&))].

N
The term of the self-energy linear in i@, implies
a quasiparticle residue Z = (1 — 93 /0iw,)”" = w/1.7

which vanishes as the critical point is approached. Sim-
ilarly, the low frequency imaginary part of the analyti-
cally continued self-energy diverges as Im2(w + i0") =
—1.2w?%/w?D + O(w?/D*w3). This leads to a quasiparti-
cle mass m™/m = 1/Z ~ 1.7/w, and a linear specific heat
coefficient

y = mwk}/3)1.7/Dw , (®)

which diverge as (U. — U)~! at the critical point.” This
divergence is consistent with the Brinkman-Rice scenario
of the Mott transition [3], as well as the infinite d second
order perturbative result [18,19].

The low frequency local dynamical spin suscepti-
bility is xic(i@n) = (gun)? [§ d7 el (T,5.(1)3. (0,



VOLUME 74, NUMBER 11

PHYSICAL REVIEW LETTERS

13 MARCH 1995

where S, = B>(Xy — X))/2, with B = (I (fTTfH Da =
0.97; it can also be calculated from a continued fraction
expansion. At low frequencies, yio.(i®,) can be fitted by

Xioc(i@,) = (gup/2)%[8 — 36l@,| + O(@H)]/wD. (9)

From Eq. (8) and the static limit of Eq. (9), a general-
ized Wilson ratio is found near the critical point,

Xioe (0)/xiae*(0) _

R = ,y/.yfree

2.8, (10)

free

where y10c¢(0) and y'™° are the values in the absence
of interactions. Compared to the value for the infinite
bandwidth Anderson impurity model [20], Ram = 2, the
critical value of R is enhanced as a result of the finite
bandwidth of the electron bath. We note that the usual
definition of the Wilson ratio is in terms of the q =
0 component of x(q,w = 0). In large dimensions for
generic q # 0, x(q) = xioc, While y(q = 0) is controlled
by the magnetic exchange. We have therefore used the
more characteristic yj, in the definition of the generalized
Wilson ratio. The enhancement of R is similar to that
found in the Gutzwiller approximation [3] which also
ignores the magnetic exchange.

The term of xjo.(i@,) linear in |@®,| leads to an
imaginary part of the local dynamical spin sus-
ceptibility of the form limg,—o xjoc(w + i07)/w =
36(gup/2)?/(Dw)?. This implies a generalized Korringa
ratio, lim,—g xiec(@ + i0%)/w xioc(0)?> which is finite at
the critical point, but again modified from the value for
the infinite bandwidth Anderson model [21].

Finally, the temperature dependence of the resistivity
induced by electron-electron scatterings can be estimated
based on the quadratic in the @&, term in the self-
energy. Specifically, we convert the w? in 2(w) at zero
temperature to (7T)? at zero frequency and assume that
the self-energy is a good approximation for a three-
dimensional cubic lattice with lattice spacing a [22].
Using the Kubo formula, we find a resistivity p(T) = AT?
where A = (327 72ha/e’D)d*i3(iw,)/d(iw,)?, giving
rise to a finite ratio

% =~ (2.3a) X 1072 Q cm (mole K/mJ)?, (1)

where a is the lattice constant in units of A. Photoe-
mission experiments [6] have indicated that LaTiO; is
very close to the Mott transition point. Equation (11)
yields A/y? = 1.5 X 107" Q cm (mole K/mJ)?> using
a=63A [7]. This is close to the measured value for
x=0.1, A/y?>=10X 107" Qcm (moleK/mJ)? [8].
While it is not clear a priori that the critical value for
A/y? when the Mott transition point U, is approached at
half filling should be the same as that when approached
away from half filling, it will be shown elsewhere that
doping a Mott insulator near U, introduces a low-energy
scale analogous to wD and that our analysis can be

extended to the doping induced Mott transition. We
also notice that in NiS,Se,_, where a metal-insulator
transition is approached without changing the number of
carriers the A/y? close to the transition [23] is very close
to the value quoted for the Sr,La;_, TiO3 system.

In summary, we have introduced a projective self-
consistent approach to strongly correlated electron sys-
tems. Our method can be generalized to deal with other
problems, in which the separation of energy scales can
be exploited [24]; for example, the proposed breakdown
of Fermi liquid theory [25], and superconductivity in
models with repulsive interactions [14,26], both of which
have been recently analyzed in large d.
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