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Spontaneous Symmetry Breaking in a One Dimensional Driven Diffusive System
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A simple model of a driven diffusive system which exhibits spontaneous symmetry breaking in
one dimension is introduced. The model has short range interactions and unbounded noise. It is
characterized by an asymmetric exclusion process of two types of charges moving in opposite directions
on an open chain. The model is studied by mean field and Monte Carlo methods. Exact solutions can
be found in a restricted region of its parameter space. A simple physical picture for the symmetry
breaking mechanism is presented.
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The question of spontaneous symmetry breaking and
long range order in one dimensional (1D) systems with
short range interactions and small but unbounded noise
is an intriguing one. It is well known that under these
conditions no phase transition takes place in thermal
equilibrium. This is the case provided the local variable
which describes the state of the system can take only
a finite number of possible values, such as in the Ising
or the Potts models. When the local variable is not
restricted to a finite set of values, such as in solid-on-
solid models for chain unbinding, phase transitions, and
symmetry breaking may take place [1]. Systems far
from thermal equilibrium are, on the other hand, less
restrictive, and the question of whether they are capable
of exhibiting spontaneous symmetry breaking under the
above conditions even when the local variable can take
only a finite set of values has been open for quite some
time. Recently, an example of such a phase transition,
in the context of error correcting computation algorithms,
has been given [2]. However, this example is rather
complicated and not widely understood.

In the present Letter we introduce a simple nonequilib-
rium one dimensional model with short range interactions
and unbounded noise which exhibits spontaneous symme-
try breaking in the thermodynamic limit. The local dy-
namical variable associated with the model is restricted to
take only a finite number of possible states. The model
belongs to a class of traffic jam models or driven diffusive
systems. It may also describe the dynamics of a certain
growth process [3]. To be specific we consider a 1D lat-
tice of length N. Each lattice point may be occupied by
either a positive (+) or a negative (—) particle, or by a
hole (0). The (+) particles move to the right while the

(—) particles move to the left. The two kinds of particles
may pass each other. The positive (negative) particles are
supplied at the left (right) end and removed at the right
(left) end of the system. The model possesses a right-
left symmetry, and the dynamical rules are invariant under

0~ + —~0 (lb)
with probabilities n dt and p dt, respectively. Similarly
at the right boundary (i = N):

0~ —, +~0, (1c)
with probabilities n dt and p dt, respectively. The dy-
namical process in the bulk is conservative: It conserves
both the positive and the negative charges. However,
these quantities are not conserved at the two ends.

One is interested in the steady state calculating, say, the
density profiles of the two charges and the corresponding
currents. The model defined above is a generalization of
the totally asymmetric exclusion model of a single type of
particles [4—7]. The bulk dynamics (la) of two species
but with periodic boundary conditions has been studied in
connection with the behavior of shock fronts [8]. Related
models in higher dimensions have also been considered
recently [9,10].

In the present work we make the observation that the
model (1) exhibits spontaneous symmetry breaking for
a certain range of the parameters n, p, q which define
its dynamics. We find two phases in which the currents

charge conjugation combined with space inversion. Un-
der the conditions where the symmetry of the dynami-
cal process is preserved, one expects the two currents of
the positive and the negative charges to be equal. When
spontaneous symmetry breaking takes place, the two cur-
rents become unequal in the thermodynamic limit (defined
below).

We now define more precisely the dynamics of the sys-
tem. During an infinitesimal time interval dt, the fol-
lowing exchange events take place between two adjacent
sites:

+0 0+, 0—~ —0, + — —+, (la)
with probabilities dt, dt, and qdt, respectively. Further-
more, at the two ends, particles may be introduced or re-
moved. At the left boundary (i = 1) one has
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corresponding to the positive and negative charges are not
equal in the thermodynamic limit. In each of these phases
the system may be in either one of two states related
to each other by charge conjugation and space inversion
i N —i + 1. Symmetry breaking does not take place
in the single species model.

The model (1) is exactly soluble for P = 1 and in the
limit n ~. The steady state profiles and the currents
may be obtained in this case by the recently introduced
matrix method [5,8]. However, the phases are symmetric
for this set of parameters (for details see [3]).

In order to obtain the qualitative features of the global
phase diagram we first study the model within the mean
field approximation, where two broken symmetry phases
are found for sufficiently small P. We then carry out
numerical simulations of the dynamical equations in
which the predictions of the mean field approximation,
and, in particular, the existence of broken symmetry
phases, are substantiated. A simple argument supporting
these findings is given. This Letter is concluded by a
study of the time scale associated with Gipping between
the two states of a broken symmetry phase for a finite
system.

To study the mean field phase diagram of the model we
denote the density of the positive and the negative charges
at site i by p; and I;, respectively. Within the mean
field approximation one neglects density-density correla-
tions and obtains the following equations for the steady
state:

J+ = p;[I —p;+i —(1 —q)m;~t],

J = m; i[1 —m; —(1 —q)p;],
for i = 1, . . . , N —1, where J+ and J are the currents of
the positive and negative charges, respectively. We have
used the fact that, in the steady state, the currents J are
independent of position. In addition to the bulk equations
(2a) one has four other equations for the currents at the
boundaries,

J+ o' ( I pl m 1 ) P pN

J— = Pmt = cI(1 piv mjv) .

For simplicity we discuss the resulting phase diagram
for the case q = 1 (the qualitative results remain un-

changed for q @ 1). It is readily seen from Eqs. (2) that
when q = 1 the two sets of bulk equations decouple. The
reason is that, away from the boundaries, a positive par-
ticle does not distinguish between a hole and a negative
particle and neither does a negative particle distinguish
between a hole and a positive particle. However, at the
boundaries the two systems of particles are coupled via
the boundary equations (2b). Defining

n" = nhi/(I —pi) = J+/(Jp/n + J /P),
(3)= shiv/(I —m~) = J /(J /o + J~/P),

where h; = 1 —p; —I, is the hole density at site i, the
problem is reduced to two one-species totally asymmetric

exclusion processes on a lattice of size N. One process
corresponds to the (+) particles with boundary parameters
(a+, P) and the other corresponds to the (—) particles with
boundary parameters (n, P). The only coupling between
the two processes is via the boundary equations (3).

The phase diagram for the one-species process with
boundary parameters (a', P') is known [4—6] (here s
stands for single species). It exhibits three phases: (a) a
power law phase for n' ) 2,P' ) 2. In this phase the

approach to the bulk density (= 2) is algebraic, and the

current is maximal (J' = 4). (b) A low density phase
[for n' ( P' and a' ( z. Here the approach to the bulk

density (= n') is exponential, and the current is J" =
n'(I —n'). (c) A high density phase for P" ( n' and
P' ( 2, in which the approach to the bulk density (= 1—1

P') is exponential and the current is J' = P'(I —P").
The high and low density phases coexist on the line

1n' = P' & 2. Using these results and Eq. (3) to get
the effective feeding parameters n, n, the (n, P) phase
diagram of the model (1) and closed expressions for the
transition lines may be obtained (for details see [3)).
The phase diagram (Fig. 1) exhibits four phases of which
two are symmetric and two are nonsymmetric. One of
the symmetric phases is characterized by a power law
decay of the local density, and the other is a low density
phase. The two nonsymmetric phases are characterized
by high density —low density (hd-ld) and low density-
low density (ld-ld) profiles, and they exist in the low

P region of the phase diagram. In these phases the
currents of the positive and the negative charges are
unequal.
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FIG. 1. The (n, P) mean field phase diagram for q = l. It
exhibits two symmetric phases: power law and low density
(ld), and two nonsymmetric phases: low density —low density
(ld-ld) and high density —low density (hd-ld). The Id-ld phase
occupies a narrow region which appears as a line on the scale
of the figure. The transitions between the various phases are
continuous.

209



VoLUMv 74, NUMovR 2 PHYSICAL REVIEW LETTERS 9 Jw&UARv 199S

1.0

0.2

0.0

1.0

0.6

0.2 1

0.0 ~

0 50 100 150 200

FIG. 2. Density profiles of the positive (p) and negative (I)
charges and hole (h) in the hd-1d ln = 1, P = 0.1, q = 1) and
1d-1d (a = 1, P = 0.333, q = 1) phases.

To demonstrate that spontaneous symmetry breaking
does exist in the stochastic model (1), we carried out
extensive Monte Carlo (MC) simulations. Figure 2 shows
typical density profiles in the two nonsymmetric phases.
They are obtained by averaging the occupations of each
site over the simulation. To calculate these profiles one
has to run the MC simulations long enough to reach the
steady state. However, running time should be smaller
than 7(N), the characteristic IIipping time between the
two states of the broken symmetry phase. The density
profiles given in Fig. 2 are flat in the bulk, with some
structure near the ends. In the hd-ld phase, the density of

1

the negative charges is larger than 2, while the density of
the positive charges is lower than 2. In the ld-Id phase

1

both densities are smaller than 2.
Consider now the characteristic time r(N) between

flips. It has to diverge in the thermodynamic limit in order
to have a stable broken symmetry phase. Moreover, since
the bulk dynamics of this model is conservative, even if
r(N) grows like N2 for large N it may not be sufficient
to demonstrate spontaneous symmetry breaking. For ex-
ample, if one considers the 1D Ising model with con-
served bulk dynamics but with some nonconserved
dynamics at the boundaries, the characteristic time associ-
ated with the decay of magnetization grows like N~. This
divergence is a result of the slow conserved dynamics,
and does not indicate spontaneous symmetry breaking.
The thermodynamic limit is thus taken to be the large t

and N limit where O(N ) ( t ( O(r(N)).
In the present model r(N) is expected to grow much

faster than N . This can be seen as follows. Let the
broken symmetry phase be characterized by currents ji, j2,
and bulk densities p~, p2 of the two species. In the two

symmetry related states, denoted by A and B, the currents
and the bulk densities are given by J+ = j;,p+ = pl,
J = j2, p = p2instateA, and J+ = j2, p+ = p2', J
j~, p = p ~

in state B. Here p are the bulk densities
of the positive and negative charges, respectively. The
question is how does a finite system flip from, say, state A

to state B? Clearly, a change in the density throughout the
lattice has to be induced by fluctuations at the boundaries,
since the bulk dynamics is conservative. Suppose such a
fluctuation takes place and a droplet of state 8 is generated
near one of the ends of a system of state A. This droplet
is separated from the rest of the system by a domain wall.
However, unlike a domain wall separating two equivalent
states in thermal equilibrium (such as a domain wall
between the up and the down states in the Ising model),
here the domain wall is not stable [Il]. The reason is
that the two currents of, say, the positive charges in the
two coexisting states, ji and j~, are different from each
other and there is a net flux of particles into or out of
the domain wall region. As a result, the droplet B is
expelled and the system relaxes back to the A state on
a time scale which depends on the length of the initial
B droplet. The system eventually flips to state 8 by a
mechanism explained below.

To examine this mechanism we consider small P,
where the two coexisting states are basically either all
positive (p+ ——1) or all negative (p = 1). Suppose the
system is in the p+ = 1 state. In this phase there is a
low flux of negative charges and holes which enter the
system at the right end and leave at the left end. As
the system evolves, a blockage of negative particles (a
droplet) may temporarily be formed at the left end due
to some fluctuation. When this happens, holes enter the

system from both ends resulting in a net influx of holes.
They get trapped in between the positive and negative
regions. A typical configuration would thus look like
(———0000+ + +). Usually, the block at the left end
leaves the system after some time and the system relaxes
to the all (+) state. However, if the block persists for
time of order N, the system will be filled with holes, and
thus has a chance of switching to the negatively charged
state. Therefore one is interested in the probability of
a block persisting for a time of O(N) To estimat. e this
probability we consider the dynamics of the block. The
right end of the block, located at a distance x(t) from
the left end of the system, performs a diffusive motion
biased to the left. The bias is due to the fact that in the
blocked state the influx of negative charges at the right
end, j;„=pn j(1 + n), is smaller than the IIux leaving
the system at the left end, j,„, = p. The dynamics of
x(r) may thus be described by a biased random walk with
absorption at x = 0. The probability P(xo, t) that such a
walker starting at position xo reaches the origin at time t
is given by

P(xo, 1) ~,], exp[ —(xo —v, )'/cr]
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FIG. 3. Time evolution of the current difference in the hd-ld
phase (n = q = 1, P = 0.15, N = 80). Each point represents
an average of the current difference over 1000 sweeps.
Flips between the two symmetry related states are clearly
seen.

for large t. Here v is the average rate at which the
droplet shrinks, and c is a constant. Within this picture
the probability that a droplet of initial size of O(1) persists
for time of O(N) is exponentially small, exp( —bN), where
b is a constant. The time scale between Hips is therefore
of order exp(bN). A detailed discussion of the switching
mechanism and the associated time scales will be given
elsewhere [12].

This behavior is very different from that of a one
species model on the coexistence line between the high
and the low density states. In that case the two states have
the same current and therefore a domain wall between the
high density and the low density states is a stable object
with a vanishing net velocity. It displays a diffusive
motion and thus takes a time of order N2 to traverse and
hence Hip the system.

To study the Gipping process in a finite system we
simulated the dynamics of Eqs. (1). In Fig. 3 we present
the time evolution of the current difference J —J+ for a
typical run in the hd-ld broken symmetry phase. Similar
behavior is found for the density difference between the
two charges. It is clear from Fig. 3 that at any given time
the two states do not coexist in the system (except, maybe,
during the short time when a Ilip takes place). This sup-
ports the argument given above, namely that droplets of
the "wrong" state are expelled from the system unless they
are macroscopically large.

To evaluate the time scale r(N) we averaged the
current difference over many runs, starting from the
initial configuration where all sites are occupied by
positive charges. This average decays at large time t as
exp[ —t/r(N)j and thus yields r(N). We have measured
the time scale for systems of size 5, 10, 20, 40, 80,
160, and the results are given in Fig. 4. At first glance

N

FIG. 4. Time scale r(X) as a function of N for N ~ 160.

they seem to suggest that r(N) grows somewhat slower
than exponentially with N, maybe like exp(aN~) with

y ( 1. However, in trying to fit the data to a stretched
exponential form we find that y tends to grow with
the system size for N ~ 160. This may indicate that
the stretched exponential form is related to finite size
effects, and that, in fact, r(N) grows exponentially for
large N, as suggested by the droplet dynamics discussed
above.
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