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Critical Cluster Size: Island Morphology and Size Distribution in Submonolayer
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The dynamic scaling of the island-size distribution in submonolayer epitaxial growth and its
dependence on the critical island size i is studied using a realistic model of epitaxial growth for
i = 0, 1, 2, and 3. An analytic expression for the scaled island-size distribution as a function of i is
also proposed. Our results agree well with experiments on Fe/Fe(100) deposition and on Fe/Cu(100)
deposition. Crossover scaling forms for the variation of the island density and critical island size as a
function of temperature and deposition rate are also presented.

PACS numbers: 68.55.—a, 61.43.Hv, 82.20.Mj

Understanding the physics of epitaxial growth has been
a long-standing problem in surface physics and materials
science. Recently considerable theoretical [1—11]and ex-
perimental [12—22] efforts have been made to understand
the kinetic processes which control the nucleation and sub-
sequent growth of submonolayer islands in both homoepi-
taxial [12—17] and heteroepitaxial [18—22] systems. In
these experiments, atoms are deposited onto a substrate
where they diffuse and aggregate to form a distribution
of islands of different sizes. One fundamental concept
that has emerged from these studies is that of a critical
island size i corresponding to one less than the number of
atoms needed to form the smallest stable island. For ex-
ample (see Fig. 1), depending on the bond energies, tem-
perature, and deposition rate, one may have a situation in
which monomers diffuse but dimers are stable (i = 1), or
in which a trimer is the smallest stable island (i = 2), or
in which the smallest stable island size corresponds to a
tetramer (i = 3). Standard rate equation theory [1,2] pre-
dicts that for a given critical island size i, the island density
X in the precoalescence regime scales as W —R +', where
R = D/F is the ratio of the (monomer) diffusion rate D
to the deposition Ilux F and where g; = i/(i + 2). The
exponent y; has been measured in a variety of experiments
and used to determine the critical island size as well as the
activation energy E for diffusion.

Recent experiments by Stroscio and Pierce [16], and
by Chambliss and Johnson [22] have shown that the
distribution of island sizes also depends sensitively on
the critical island size i. Theoretical studies using both
rate equations [6,11] as well as simulations of point-island
models [6] where islands are assumed to be pointlike (i.e.,
have no spatial extent) have been carried out. However,
calculations of the island-size distribution based on these
models do not agree with experiments. In addition,
while simulations of the island-size distribution for more
realistic models (mainly for i = 1) have recently been
carried out [7—11], no systematic study of the island-size
distribution and its dependence on the critical cluster size
i has so far been performed.
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FIG. 1. Diagram showing stable island configurations for
different critical island sizes i = 0 to 3. The case z = 1

corresponds to i = I on any lattice, while z = 2 corresponds
to i = 2 and 3 on triangular and square lattices, respectively.
Also shown is the case i = 0, which corresponds to freezing of
mon omers.

In this Letter, we study the dynamic scaling of
the island-size distribution and its dependence on the
critical island size using extensive Monte Carlo simula-
tions of a realistic model of epitaxial growth. We also
derive an analytic expression for the scaled island-size
distribution as a function of i which agrees well with
our simulation results as well as with experiments on
Fe/Fe(100) deposition at low and high temperatures and
on Fe/Cu(100) deposition at room temperature. Finally,
we present a quantitative expression for the variations of
the island density and critical island size with temperature
and deposition rate and demonstrate that our crossover
scaling results can be used to determine the transition
temperature for the change in the critical island size
as well as the activation energy for nearest-neighbor
attachment in Fe/Fe(100).

According to the dynamic scaling assumption [23], the
island-size distribution N, (0), corresponding to the density
per site of islands containing s atoms at coverage 0, can
be written in the general scaling form [3,6,8]

N, (0) = OS f;(s/S), (I)
where S(0) = P, sN, (9)/g, N, (9) is the average island
size and where the scaling function f;(u) satisfies the
sum rules f„f;(u) du = fo f, (u)udu = 1. Our analytical
expression for f;(u) is based, in part, on the observation
[8] that for the case of fractal islands with i = 1 in
the scaling regime, the island-size distribution scaling
function fi (u) has approximately linear behavior for small

2066 0031-9007/95/74(11)/2066(4)$06. 00 1995 The American Physical Society



VOLUME 74, NUMBER 11 PH YS ICAL REVIEW LETTERS 13 MARcH 1995

1 i+1
f;(u) = 1 — u ; 0 ( u ~i+2 i+2
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(3a)

+
f;(u) = 0; u )

l + 1
(3b)

In addition to the difference in the small-u behavior, our
analytical form (2) has a peak at u = 1 for all i, whereas
in (3) the distribution diverges at u = (i + 2)/(i + 1).

In order to determine the scaled island-size distribution
as a function of critical size i, we carried out extensive
simulations of a simple but realistic model of epitaxial
growth. In our model, atoms are randomly deposited on
a lattice at a rate F per site per unit time. Monomers
that have been deposited on the substrate or on top of
an existing island diffuse by nearest-neighbor hops at a
rate given by D = Doe . ', where E is the activation
energy. Similarly, a surface atom with 0 ( n ( z in-

plane nearest neighbors can hop with activation energy
E„so that the relative diffusion rate is given by ~„=
D„/D = e ae"~"'T where b, E„=E„—E, . In order to
study the effects of island relaxation on island morphology
we have also included an additional activation energy
E,(r, = e "~"' ) corresponding to enhanced diffusion
of atoms with one nearest neighbor along the edge of an
island. To systematically study the effect of the critical
island size on the island-size distribution we assume the
atoms with g or more neighbors are not allowed to detach
from an existing island. This implies that in our model, the
critical island size i depends on both the underlying lattice
and z (see Fig. 1). By varying z and studying various
lattices as well as varying the relevant activation energies,
we studied the island-size distribution and morphology for
i = 0, 1, 2, and 3.

Figure 2(a) shows our results for the island-size distri-
bution scaling function for the case i = 1, obtained from
simulations on a square [8] and triangular lattice with z =

u, with both the lower limit of the linear region and

f ~ (0) approaching zero with increasing D/F and coverage
[8,24]. For i ) 1 we expect smaller islands to have a
lower density and f;(u) to go to zero faster than the first
power. We therefore assume that for general i in the
asymptotic large D/F limit, the island-size distribution
behave as u' for small u. Assuming a form with an
exponential cutoff and a peak at u = 1 corresponding
to the average island size, this leads to the following
approximate general scaling form for i ) 1:

f;(u) = C;u'e "'"

where the constants C; and a; satisfy the expressions

I [(i + 2)a;] . (ia;)'

which are determined from the sum rules for f;(u).
We note that this form is quite different from the size
distribution obtained from solution of the point-island rate
equations in the large D/F limit [6,7,25],
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1 corresponding to deposition with irreversible nearest-
neighbor attachment. The open squares and circles corre-
spond to simulations without edge diffusion, which leads
to fractal islands, while the open diamonds correspond to
simulations of compact islands with finite edge diffusion.
Also shown is our analytical form (2) for f&(u), along with
experimental results for Fe/Fe(100) deposition in the tem-
perature range 20 C —207 C for which the critical island
size is believed to be 1 [15]. As can be seen, there is
very good agreement between our simulation results and
our analytical form, as well as with the Fe/Fe(100) experi-
mental results. We note, however, that there exists a weak
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FIG. 2. Comparison of our simulation results (open symbols),
analytic form Eq. (2) (solid line), and experimental results for
Fe/Fe(100) (filled symbols) for the island-size distribution scal-
ing function f;(u) for i = 1, 2, and 3. (a) i = 1. Simulation
results are for 0 = 0.1 —0.4 with rl = 0, R = 10 —10, and
r, = 0—104. Experimental data [16] are for T = (20—207) 'C.
(b) i = 2. Simulation results are for 0 = 0.1 —0.4, R = 107—
10', and r& = 0.003 —1. Filled diamonds are the experimen-
tal results at T = 250'C. (c) i = 3. Simulation results on
a square lattice for 0 = 0.06—0.3 with R = 5 X 10 —10",
r~ = 10 —2.5 X 10, and r, = 0—10 . Experimental results
are for T = 301'C (diamonds) and T = 356 C (circles). Inset
shows picture of island from simulations at 0 = 0.06 for the
case R = 5 X 10, r& = 10 with r, = 0 and N = 6.7 X 10
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dependence of the island-size distribution scaling func-
tion on the island morphology for small u [24], since for
fractal islands f~(0) goes to zero with increasing D/F,
while for compact islands f ~ (0) remains finite at low cover-
age. However, with increasing coverage the compact dis-
tribution appears to approach the fractal distribution and
our analytical form.

The case i = 2 was simulated on a triangular lattice
with the restriction that any atom with two or more nearest
neighbors is irreversibly "frozen" (i.e., z = 2). Figure
2(b) shows our simulation results are in good agreement
with our analytic form (2) for i = 2. A log-log plot
of the data [24] for small u has slope 2.05 ~ 0.05, in

agreement with our conjecture for the small u behavior
of fz(u). The filled diamonds shown in Fig. 2(b) are
experimental results for Fe/Fe(100) at an intermediate
temperature T = 250 'C which demonstrate that with
increasing temperature the critical island size crosses over
to a higher value.

The case i = 3 has been suggested as the critical cluster
size for Fe/Fe(100) deposition at elevated temperatures
[16], since at these temperatures the probability for an
atom with one nearest neighbor to detach from an island
becomes significant while the probability for an atom
with two nearest neighbors to detach is negligible. In
this case the minimal stable configuration is a tetramer
(see Fig. 1) and we studied a similar model for i = 2
but on a square lattice. As can be seen in Fig. 2(c),
the simulation results (both with and without enhanced
edge diffusion) cover a wide range of coverages, as well
as values of D/F and r~, including 0 = 0.07 for which
the island-size distribution was measured for Fe/Fe(100).
There is, again, very good agreement between all our
simulation results and the analytical form (2) as well
as the experiments. This confirms that i = 3 is the
critical island size for Fe/Fe(100) deposition [16] in
the temperature range 301 C —356 C. In addition, a
log-log plot of our simulation results for small u [24]
gives fs(u) —~', with x = 2.9, in good agreement with
our conjecture for the small-u behavior of f, (u). The
inset in Fig. 2(c) shows a typical picture of the islands
formed at an island density close to that observed in the
experiments.

In addition to i = 1 to 3, we also considered the case
i = 0 which corresponds to the spontaneous nucleation
or freezing of monomers. This may occur due to the
presence of surfactants or impurities on the surface [14]
and has also been experimentally observed in the case
of Fe on Cu(100) deposition [22]. In this case isolated
Fe atoms spontaneously embed into the substrate and
form stable islands leading to a critical island size i =
0. As shown by Chambliss and Johnson, using a rate-
equation approach, this implies go = 0 (i.e., the island
density is independent of D/F), in agreement with the
prediction ~; = i/(i + 2). To simulate this case, we
studied a model in which (in addition to the usual diffusion
with hopping rate D), monomers spontaneously freeze and
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form stable islands at a rate given by R, = r, D, where r,. =
e ' ' depends on the extra activation energy AE, =
E, —E beyond that for normal diffusion. In addition, any
rnonomers that become nearest neighbors of an embedded
island are immediately added irreversibly to the embedded
island. Figure 3 shows our results for the island-size
distribution scaling function for this case for r,. = 10 ~—
10 and 0 = 0.06 —0.3 and D/F ~ 109. The island-size
distribution scaling function fo is essentially independent
of the embedding probability ratio r, as well as D/F
for large D/F over all coverage. As expected from our
conjecture for the small-u behavior of f;(u), the island-
size distribution scaling function in this case is nonzero at
u = 0. In addition, the scaling function looks quite similar
to that obtained in the experiment. However, there does
not seem to be a simple analytic form for fo(u).

Finally, we made a systematic study of the variation
of the island density N and critical island size i with
temperature, which is important in the interpretation of
experiments. For fixed values of the critical island size i,
our simulation results (go ——0, ~~ = 0.33, ~z = 0.5, and

yq ——0.58) are in good agreement with the rate-equation
prediction y; = i/(i + 2). By varying r& and R = D/F,
which is equivalent to varying the temperature, we studied
the crossover from t = 1 to t = 2 on a triangular lattice
and from i = 1 to i = 3 on a square lattice. For example,
for simulations on a square lattice with large R and finite
r] and island densities in the range of those observed for
Fe/Fe(100) at high temperatures, we find N —R ~'r~
with g3 ——0.6 corresponding to i = 3. However, for

1

smaller R or very small r], we find a crossover to g~ = 3,
corresponding to i = 1. Our results for the crossover
in the critical island size from i = j to i = k can be
summarized by the general scaling form for the island
density as a function of r] and R:

N(r|, R) = R ~'f, j, (r,
' R),
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FIG. 3. Island-size distribution scaling function fo(u) from
simulations on a square lattice for i = 0 with r, = 10 '
(triangles), 10 ' (circles), and 10 ' (diamonds) with R ) 109.
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where f,q(u) — const for u (( 1, and f,i, (u) —u~j ~' for
u » 1. We find x~2 = 1.5 and x]3 1.25. Using the
scaling form (4) as well as our simulation results for
the crossover scaling function f~3 [24] and comparing
with the experimental value of the island density and
D/F at T = 356 C given in Ref. [15],we have estimated
the activation energy AFi for "one-bond" detachment in
Fe/Fe(100). We find AE~ = 0.6 ~ 0.1 eV in good agree-
ment with a previous experimental estimate of 0.55 eV
[16] as well as with a recent estimate (0.7 eV) based on
a rate-equation analysis [26]. Surprisingly, this number
is much larger than might be expected from bond count-
ing and cohesive energy arguments [27]. Thus it may
correspond to an "effective" dissociation energy arising
from complex kinetic processes [26]. An alternate pos-
sibility [28] is that the large value of 6E& stems from the
existence of two different diffusion mechanisms (e.g. , ex-
change and hopping) which have different activation ener-
gies. This possibility was not included in our simulations.
A complete understanding of the meaning of this large
value will require detailed first-principle calculations.

We may also use the previously estimated values of
Dp and E, [15] along with our crossover scaling results
to estimate the transition temperature T from i = 1

to i = 3 behavior in Fe/Fe(100) deposition. We find
T = 260 C —300 C where the lower limit corresponds
to the onset of deviations from i = 1 behavior and the
upper limit corresponds to full-blown i = 3 behavior, in

good agreement with the experimental results shown in

Fig. 2.
In conclusion, we have carried out extensive simu-

lations of a realistic model of submonolayer epitaxial
growth. Our results for the scaled island-size distribu-
tion for critical island size i = 0, 1, 2, and 3 demonstrate
clearly the strong dependence on critical island size and
are in good agreement with recent experiments. We have
also proposed an analytic form for the scaled island-size
distribution f;(u) based on the small-u behavior as well
as well-known sum rules which gives excellent agreement
for i = 1 —3 both with experiments and with our simu-
lations. Finally, we have presented a quantitative dis-
cussion of the variation of the island density and critical
island size as functions of temperature and deposition rate.
We expect that our analytical and simulation results for
the island-size distribution as well as our crossover scal-
ing results will be useful in the analysis of a wide variety
of experiments on submonolayer epitaxial growth.
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