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Magic Islands and Submonolayer Scaling in Molecular Beam Epitaxy
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The characteristic distance l between nucleation sites and the island size distribution are studied for
layer-by-layer growth. A derivation is given that the scaling of I with the deposition rate depends only
on the size of the smallest stable rather than the largest unstable island. This is important if larger
islands are less stable than smaller ("magic") ones. A new algorithm for simulating molecular beam
epitaxy is used to verify this result. It is shown that the size distribution function scales with the
average island size only if magic islands are absent. Finite size effects for the density of stable islands
and of adatoms are studied and related to the transition to step flow growth on vicinal surfaces.

PACS numbers: 68.35.Fx, 61.43.Hv, 68.55.—a, 82.20.Mj

The growth of thin films by molecular beam epitaxy
(MBE) has attracted increasing attention over the last
decade due to its technical importance, but also because
it provides a particularly clean example of nonequilibrium
surface science. The refinement of surface sensitive ex-
perimental techniques like scanning tunneling microscopy
(STM) or diffraction methods has provided powerful tools
for comparing theoretical predictions and experimental re-
sults. In particular, research on growth which proceeds
atomic layer by atomic layer has made it possible to
deduce microscopic quantities, such as binding energies,
critical cluster sizes, and diffusion constants from "macro-
scopic' ones like island size distributions [1] and typical
length scales on the surface [2,3].

One of the classical results [4,5] for the nucleation of
two-dimensional islands in layer-by-layer growth is that
the characteristic distance l between nucleation sites has
a power law dependence on the ratio between the surface
diffusion constant D and the deposition rate F:

energies, which cannot be obtained from measuring the
characteristic length (1). We also present the first system-
atic study of finite size effects of MBE simulations.

Equation (1) can be derived from a simple estimate of
the nucleation rate [10,11]. Consider the time evolution
starting from a Hat substrate without islands. As the
coverage increases the distance between island centers
decreases until it ~ocks into a minimal value l, when
islands start to interact. This happens when the area l2

is spanned by an island which contains —(l/a)"& atoms,
where df is its fractal dimension and a is the lattice
constant. Hence the duration of the nucleation period is
given by FT„„,l2 = (l/a)df. As there is one nucleation
event per area l~ during T„„„the nucleation rate can be
estimated by (l T„„,) ' = F(a/l)"&.

An independent expression for the nucleation rate can
be derived from rate equations so that one obtains an
implicit equation for l:

(3)

This length can be measured, e.g. , by determining the
density of stable islands I 2 with STM [2]. More
specifically one can measure the densities p, (O, D/F) of
islands of size s [1]. Bartelt and Evans [6] discovered that
the coverage 9 and D/F enter the normalized distribution
s p, /0 only through the average cluster size s(0, D/F):

(2)

This has been confirmed experimentally [1]. Recently it
has also been demonstrated [7,8) that the edge diffusion
responsible for getting fractal or compact islands does not
change the scaling function f

The main result presented here is that (2) is not valid if
the smallest stable cluster, whose size determines y, is a
magic island [9], i.e., if it is stable while larger islands are
unstable. Therefore the size distribution function gives
independent information on the s dependence of binding

with

Fl ~,
1 + Fl27-,

1 —p,, +]
andq, , =1 —p,, (4)

where 7-, denotes the waiting time for emission of one of
the s atoms of a cluster onto the adjacent terrace. The
upper cutoff i* of the product denotes a cluster size above
which all islands can be regarded as stable. The continued
fraction q, is anchored at s = i * with q, - = 1. Desorption
of adatoms has been neglected.

The right hand side of (3) is obtained by the follow-
ing reasoning: First one identifies the nucleation rate with

Dpi p;-, i.e. , with the rate at which a critical island cap-
tures an adatom [12]. The adatom density is assumed to
vary slowly, so that F = p~D/l, because the deposition
rate must be balanced by the rate at which adatoms van-
ish forever by being bound to a stable island. The latter
event requires diffusion over the typical distance l. The
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nucleation rate is thus (F2/D)l p; /p&. Using the solution

p, /p, &

= p, /q, of the rate equations

dps/dr DP1Ps —I DPlps Ps/rs + Ps+I/&s+I

for 2 ~ s ~ i, assuming d p, /dt = 0, gives (3).
If 1 » p, = Fl~7-, for all s ~ i*, i* is the critical

cluster size. Then all q, can be replaced by 1, and (3)
can be solved for l, leading to (1) with [4,5,10]

l"'=2;*+2+d,
The condition p, (& 1 is often violated. An island is
called stable if Fl~ && I/~„so that p, is practically 1.
Hence stability depends on the deposition rate F, whereas
i is in general only an upper bound for unstable cluster
sizes. Moreover, one finds [9] that the stability of islands
does not vary monotonously with their size. Certain
values of s allow particularly stable cluster structures, so-
called "magic islands. " An example are heptamers on
Pt(111) where six atoms are grouped around a central
one on a triangular lattice, so that every atom has at least
three lateral neighbors. Adding one more atom gives a
much less stable cluster, as this atom can at most have
two lateral neighbors. Also the smaller clusters are much
less stable than the heptamer. This shows that the factors
p, may be close to 1 for the magic numbers s = 7,
s* = 10, etc. while those for 1 —6 and in between the
magic numbers are ((1. Then (6) is no longer true.
Instead, y(i*) has to be replaced by y(io), where io + 1

is the size of the smallest stable island. This result is
obtained by applying the identity q, + p, —1 = (q, +& +
P, +, —1)P,/q, +, to show that the product over all q,
with s ) io equals the one of the corresponding p, 's.

In order to check these predictions we developed a new
algorithm for simulating MBE. The basic idea is a coarse
graining of the lattice parallel to the layers. Growth starts
with a flat substrate, the surface of which is divided into a
square lattice of L cells of Q, x) ) i atomic sites each.
At later times the surface of the growing film remains
divided into I.2 cells, but they may vary in height. The
surface configuration is characterized by the number of
completed layers h( j) below cell j, a partial filling of this
cell with 0 ~ m( j) ( (Ax)2 atoms, and a step indicator
is(j) = 1 or 0 depending on whether or not the cell
contains the edge of an island larger than i*.

The implementation of the growth kinetics will first
be described in the absence of magic islands. Then all
cells with 1 ~ m(j) ~ i can lose up to I(j) atoms
to neighboring cells by diffusion. For simplicity we
assume a single time constant tD = (Ax) /D for all
these processes. It corresponds to the time step of the
simulation. As soon as more than i* atoms are gathered
in the same cell j they are supposed to form a stable
island within one time step: is( j) is set 1 indicating that

the cell has changed from a possible source of diffusing
atoms into a perfect sink. It is assumed that any adatom
coming closer to the island edge than Ax is incorporated
into the growing film within time tD. Deposition of
an atom means incrementing I(j) by 1 for a randomly
chosen cell j. This may happen in any simulation step
with a probability that guarantees the correct average
waiting time I/[FL2(hx)2] between deposition events. If
an atom is deposited into a cell with an island edge, it
is assumed to be incorporated within the same time step,
which is long enough to allow diffusion over a distance
Ax., no distinction is made between deposition close to a
downward or to an upward step, i.e., step edge barriers are
neglected here. When m( j) ~ (Ax)~ the local number of
complete layers h( j) is incremented by 1, m( j) is reduced
by (Ax)2, and the step indicator is updated such that the
island edge invades the neighboring cells of lower height.

A few remarks on the applicability of the algorithm
are in order: Only one island per cell is allowed by
the algorithm. This requires Ax &( l. As l results from
the growth kinetics, this is a consistency check for the
simulation. The minimum arm width for fractal islands
is given by the coarse graining length, so that Ax can
be identified with the diffusion length along the island
edge [13]. Taking the existence of magic islands into
account is straight forward. Here we consider only the
case where islands of sizes s* and all s ~ i* ) s* are
stable. Once the cell contains a number of atoms m( j)
in the stability gap this number cannot decrease below s*
anymore. Further details of the algorithm can be found im

Ref. [14].
Coarse graining has several benefits: Computation time

is reduced by a factor (b,x) ~, and we do not have to im-
plement edge diffusion explicitly; edge instabilities can
only occur on distances larger than Ax. A major advan-
tage of this algorithm is that any i* and s can easily
be implemented without the need of an underlying lattice
symmetry which would make the values microscopically
plausible. Therefore the theoretical prediction (6) can be
checked by computer simulation even for values i* and
magic island sizes which are not accessible in laboratory
experiments. In contrast to all previous MBE simulations
diffusion is performed with parallel rather than random
sequential updating. The coarse graining is very similar
to noise reduction algorithms [15]. There the counters can
only increase.

The island density at fixed coverage 0 = 0.12 is plotted
in Fig. 1 for i = 1, . . . , 4. Obviously increasing i* leads
to larger island sizes since the density decreases by
nearly 1 order of magnitude, as predicted by (6) and
seen in STM experiments [1]. The value for i* = 1

and D/F = 10s is in quantitative agreement with the one
obtained in essentially the same model without coarse
graining and with random sequential updating [16]. The
exponents y(i ) obtained from this plot are summarized in
Table I along with the ones predicted by (6) with df = 1.7
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FIG. 1. Island density for various critical sizes i*.

[16,17]. Similar values have been obtained independently
by Amar and Family [8]. We also measured the adatom
density

pi = Fl/D—= I,

The values of y(i") obtained this way are also given in
Table I. It will be shown below that finite size effects are
responsible for the difference between the measured ex-
ponents for i" = 1 and 4. Apart from y(1) all measured
exponents are somewhat smaller than the predicted ones.
Ratsch et aI. [18] proposed to invert (6) for continuous
i* to interpret the data in terms of effective critical island
sizes. We find that the effective i* is at least 15% smaller
than the integer value used in the simulation.

Figure 2 shows the corresponding results for i* = 3, 4
in the presence of a magic island of size s = 2 or
3. As predicted only the value of s* determines y.
Although the measured exponent 0.19 is slightly larger
than the expected value y(1) = 0.17, it still can be taken
as signature of the smallest stable islands having size
s* = 2. For s* = 3 and i = 4 the exponent y = 0.24
is in perfect agreement with the expected value y(2).

The scaling functions f(x) for several values of i"
with and without a magic island size s* = 2 are shown
in Fig. 3. All islands of the same or larger size than
the smallest stable island have been counted. Without
the magic island a good data collapse is obtained for
D/F between 107 and 109, coverages 0 between 0.05
and 0.25, and coarse graining lengths Ax (or arm widths
of the fractal islands) between ~2 and 4, confirming
(2). The distribution functions are sharply peaked around
s/s = 1 and become narrower with increasing i . This
is in agreement with results obtained for different models
[8,18,19] and experiments [1]. Our scaling functions are

FIG 2. Density of islands with s ) i* for i* = 3 4 and
s = 2, 3.

0.5

0)
10)

narrower than those of Refs. [1,8, 16,18,19], but wider
than the ones obtained from rate equations [7]. The coarse
graining is not the reason for this difference, as our results
hardly depend on Ax. Possibly the diffusion length of
individual adatoms fluctuates less for parallel updating
than for random sequential updating. It is conceivable
that this reduces the scattering of the island sizes around
their average size.

In the presence of magic islands there is no data col-
lapse for different coverages anymore as demonstrated in
Fig. 3. The cluster size distributions for three coverages
(0 = 0.05, 0.1, and 0.15) are shown for D/F = 10" and
s = 2, i = 3. The distributions clearly become sharper
with increasing coverage. No dependence on i* could be
observed for fixed s*. Absence of scaling is not so sur-

prising in view of the high population of immobile and
stable dimers (s = 2) on the surface. They are collected
by the growing islands hence providing a second mecha-
nism for the increase of s with 0, independent of adatom
diffusion over a unique characteristic distance I.

It is reasonable to assume that similar results hold for
all magic islands. Recently Zuo et al. [3) used diffraction
experiments to measure l(F) for Cu(100). They found
that y changes from about 1/6 for a temperature of 223
K to about 3/10 for 263 K and concluded that the critical
island size jumps from i,

* = I to i* = 3. However, their

TABLE I. Predicted and measured exponents y(i*).

Eq. (6)
Fig. 1

(C 1)

0.175
0.172
0.2

0.26
0.24
0.22

0.31
0.275
0.24

0.34
0.29
0.32

0.0
0.0 1.0

s/s

FIG. 3. Scaling function f(x) [Eq. (2)] for different critical
cluster sizes i* = 1, 3, the latter with and without a magic
island s = 2. Filled (open) symbols, D/F = IO'(l0').
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FIG. 4. Finite size behavior of the island (filled) and adatom
(empty) density for i = 1. Circles, D/F = 107; squares,
D/F = 10'o.

ab initio calculations show that pentamers are less stable
than trimers. Therefore i* in the sense of an upper bound
for unstable sizes [4,5] is larger than 3. Our results
explain their measured exponent, because it is determined
by the smallest stable island size s* = 4 rather than by i*.
Moreover, we predict that for 263 K (2) is violated.

Finally we briefly address finite size effects. Three
lengths have to be compared with the system size LAx.
The first one is the typical distance l between islands and
the second is the typical distance li between adatoms, as
defined in (7). The third length, lo = (D/F)'/, is the only
one which has the right dimension without invoking the
lattice constant a. lp is the average distance an adatom
travels before the deposition of the next atom, if there
are neither island edges nor other adatoms encountered.
For I b, x & max(lo, l) and periodic boundary conditions
the system, therefore, contains only one island [20].
Similarly, vincinal surfaces with a terrace width smaller
than max(lp, l) should grow in step flow mode. For
simplicity we assume df = 2 in the following discussion.
Then it follows from (6) and (7) that l « l, « l, for
i* ( 2, while all inequalities are reversed for i* ) 2. For
i* = 2 all three lengths are equal. This shows that for
i = 1 the adatom density is more susceptible to finite
size modifications than the island density and explains
why the value of y obtained from Fig. 1 is more reliable
than the one obtained from p] as shown in Table I. For
i ~ 2 the opposite is true. We believe that this is the
reason why for i = 4 we find island densities which
tend to be too large, leading to an underestimation of the
exponent y. Figure 4 shows the size dependent island
and adatom densities for i = I and D/F = 10'o. For
LAx ~ lp = 300 the island density decreases as there is
essentially one island in the system. For larger systems
the island density increases again and approaches its

asymptotic value (F/D)zi'. The adatom density reaches
its asymptotic value (F/D)' 2i' only much later, for
Lkx ~ l) = 2000.
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