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Atomistic Calculation of Oxygen Diffusivity in Crystalline Silicon
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A theoretical calculation of the diffusivity of oxygen in crystalline silicon is presented based on
constrained path energy minimization and jump rate theory using an empirical interatomic potential,
which was recently developed by us for modeling the interactions between silicon and oxygen atoms.
The calculations predict that an oxygen atom jumps in a (110) plane from one bond-center site to
another. The saddle point configuration is farther away from the starting configuration than the midpoint
along the path. The oxygen diffusivity is predicted as D = 0.02%exp( —2.43 eV/k&T) cm~/sec and is
in excellent agreement with experiments.

PACS numbers: 66.30.Jt, 31.15.—p, 61.72.Yx, 82.20.Db

Oxygen is the primary impurity in commercial silicon
crystals grown by the Czochralski process. It is typically
introduced into the crystal during solidification from the
melt because of the dissolution of the quartz crucible used
in the Czochraski puller [1,2]. Most oxygen atoms exist
in silicon as interstitial impurities that occupy puckered
bond-center sites which bridge two neighboring silicon
atoms along the (111) direction [3]. Because the solu-
bility of oxygen in silicon decreases with decreasing tem-
perature, crystal cooling and thermal annealing lead to the
precipitation of oxygen clusters that range in size from
several nanometers to tens of micrometers. Small clus-
ters of silicon and oxygen containing up to 20 oxygen
atoms are electrically active and are referred to as ther-
mal donors. Larger oxygen precipitates, believed to be
microphases of silica, play essential roles in the internal
gathering of metallic impurities in industrial processing of
silicon. The diffusion of oxygen plays a critical role in
the formation of these clusters, and, as a result, the ex-
perimental measurement of the diffusivity of oxygen in
silicon has received much attention. These experiments
can be classified either as oxygen transport measurements
or as relaxation frequency measurements. Oxygen trans-
port measurements [4—7] performed at temperatures from
1000 to 1500 K measure oxygen concentration profiles
which are fitted by predictions for Fickian diffusion to
yield the diffusivity as a function of temperature. Other
experiments [8,9] performed at 600 to 700 K use stress-
induced dichroism of the 9 p, m infrared spectrom peak for
oxygen in silicon to measure the frequency of relaxation
of oxygen after the release of an imposed stress on the
crystal. The diffusion constant is calculated from the re-
laxation rate by assuming that the relaxation of the dichro-
ism has the same underlying mechanism as the diffusion.

Different experiments have yielded quite different fits
of the diffusion coefficient by an Arrhenius expres-
sion; these differences have been attributed to the lim-
ited temperature range of some experiments and to
anomalously fast oxygen diffusion in others, probably
involving oxygen-oxygen or oxygen-defect interactions
[9]. However, most data from these experiments can

be consistently fit by a single expression of the form
D = 0.13 exp( —2.53 eV/ktiT) cm /sec, as pointed out by
Mikkelsen [10]. He obtained this expression by fitting to
data from six independent experiments. This expression
is generally believed to be the intrinsic diffusion constant
involving oxygen jumping from a bond-center site to one
of the six nearest bond-center sites.

Theoretical investigation of oxygen diffusion in silicon
is difficult because of the large diffusion barrier and the
complicated nature of mixed bonding between oxygen and
silicon atoms. Several theoretical efforts have attempted
to calculate the diffusion barrier, but have obtained
different results. Needles et al. [11] found a barrier of
1.8 eV from supercell calculations using a local density
functional theory. A similar calculation by Oshiyama and
Saito [12] gave 2.0 eV, while earlier cluster calculations
by the same authors yielded 1.2 eV [13]. Snyder and
Corbett [14] and Kelly [15] computed 2.3 to 2.5 eV
from self-consistent calculations. All these calculations
assume that the saddle point configuration for diffusion
is in a (110) plane and at the midway between the two
bond-center sites. No calculations of the prefactor of the
diffusion constant have been reported.

In this Letter, we report calculations of oxygen dif-
fusion in silicon using an empirical potential that has
recently been developed for oxygen-silicon interactions
[16]. The diffusion path is determined by a series of en-
ergy minimization calculations performed with the con-
straint of a constant cone angle 0 between the 0-Si bond
and the axis connecting the two silicon atoms bonded to
the oxygen atom at the initial equilibrium configuration;
the angle 0 is shown in Fig. 1. The diffusion coefficient
is calculated using jump rate theory [17,18].

The empirical interatomic potential for the 0-Si system
is constructed using the Stillinger-Weber (SW) silicon
potential [19) and the silica potential of van Beest,
Kramer, and van Santen [20]. Three new components
are introduced to describe the charge-transfer and mixed
bonding between oxygen and silicon atoms. These
ingredients include (a) a charge-transfer function, (b) a
bond-softening function, and (c) an ionization energy.
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(110& 6
iti;j = q;qj/rj + A;j exp( —b;~r;j) —c;~/r, (2)

where q; is the effective charge on atom i, r;j is the
distance between ith and jth atoms, and (A,, b;, , c;,) are
parameters that depend upon the species of interacting
atoms. The effective charge on each atom is defined as

FIG. 1. Schematic diagram showing the constraint angle 0
and its relationship to the two silicon atoms (Sil and Si2) that
are bonded to the oxygen atom. The constraint of constant 0
does not confine the oxygen atom to the (110) plane.
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The parameters are fitted to the structure, vibrational
frequency, and formation energy of an oxygen interstitial
in silicon. Details of the construction and parameter
fitting process for this composite interatomic potential are
published in [16],where the potential is also used to study
the structural, energetic, and vibrational properties of
interstitial-oxygen and vacancy-oxygen clusters, yielding
results in good agreement with available experiments on
vacancy-oxygen structure. For instance, our calculations
[16]predicted that an oxygen atom bonds to a vacancy (V)
by forming a Si-0-Si cluster in a (110)plane with two sili-
con atoms neighboring the vacant site; the U-0 cluster
has a Si-0-Si angle of 168' and a binding energy of
1.5 eV. Only the form of the potential is described in
this Letter; the parameters for the potential and their
values are listed in Table I of [16].

The total potential energy of the system is given by

~([ri)) g ei(qi) + gl +2(t. j) + 4i, ] g ~3(i, j, k),
i(j(k

where (r;) represents the positions of the particles, (i, j, k)
are taken over all atoms, and the energy is measured in
units of e = 50 kcal/mol and distances are in units of
cr = 2.0951 A., as used in the SW potential for silicon
[19]. The term @;, in Eq. (1) has the same form as the
van Beest potential [20]

g, f2(r, ),
&2k&. J) = '

ifi CSiandj CSi,
otherwise,

where f2(r;, ) is defined exactly as in the SW potential:

A(Br " —r ~) exp[(r —a) '], if r ( a,
fz(r) =

(6)
and the constants (A, B,p, q, a) have the same values as
in the SW potential. The constant (g;j) in Eq. (5) is a
charge-dependent bond-softening function,

1 1
exp —exp, if q; + qj ( q„

gij qs qi + qj qs
1f qi + qj ~ qs

(7)
which decreases monotonically from 1 to 0 as the sum of
the charges (q; + q, ) increases from 0 to the cutoff value
of q, . The three-body term has the form

0,

where r,; = lr, —r;l, q, is a constant, and the charge-
transfer function H(r) is

1f r(ro,
1 1 r —rH(r)= ~
2 + icos 7r ', ifro(r(r„(4)

r, —r,
0, ifr(r„

with the parameters r, and r, . The remaining portion of
the two-body term in Eq. (1) is written in a modified form
of the corresponding term from the SW potential as

gij gikh(rij rik (jj ik) + gji gjkh(rji rj k ~ikj ) + gkigkj h(rki rkj ~ikj )P3(l, J, k) 0

where the function h(r;, , r;k, O, ,k) is the same as in the SW potential:

if i, j, k C: Si,
otherwise,
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Aexp[y(r;~ —a) ' + y(r;k —a) '] cosO, ,k + 3, if r;J ( a and r;k ( a,hirij rik~ jikp
0, otherwise,

where 0,;k is the angle between r;, and r;k, and the constants (A, y) have the same values as those in the SW potential.
The ionization energy e; (q;) is modeled for each atom by

for silicon atoms (i C Si), and

eo exp[ —1/(q; —qs;)], if q, ) qs;,
0, otherwise, (10)

e;(q;) = .
1 . pepexP p 1f qi ( qo

q; —qo
0, otherwise,
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Do = 2d/gl 1 (13)
with d the dimensionally of space, l the elementary
jump length, and g the number of equivalent diffusion
paths [17]. Since each bond-center site has six nearest
neighbors and sixfold degeneracy [3,17,21], g = 36. The
attempt frequency v in Eq. (13) is given by [18]

3N 3N —1

S
V;

i=1 i=1

where (v,') are frequencies of the N-atom system in the
equilibrium state and (v,') are 3N —1 frequencies of
the system at the saddle point configuration along the
diffusion path.

The diffusion path and the energetic barrier are calcu-
lated from a series of energy minimization calculations
which are performed with the constraint of a constant cone
angle 0, as shown in Fig. 1. This constraint allows the
oxygen atom to move out of the (110) plane; molecular
dynamics simulations reported in [16] predicted an equi-
librium value 0 = 3.5' at 297 K, which decreases to 0 as
the temperature tends to zero. A cell of 216 silicon atoms
with periodic boundary conditions is used to calculate the
energy of the constrained system for a given value of 0.
The constraint is implemented using the augmented La-
grangian method [22]with the generalized energy function

for oxygen atoms (i t: 0). In these forms, the constants

qo and qs; are fixed at the values of the charge on the
oxygen and silicon atoms, respectively, as given by the
van Beest potential for silica.

The diffusion constant is given from jump rate theory
[17,18] as an Arrhenius expression

D = D0 exp( —b, E/k21T), (12)
where AE is the diffusion energy barrier, and the prefactor
Dp is determined by
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occur at 0 = 78 and corresponds to an energy barrier
of AE = 2.43 eV. The diffusing oxygen atom reaches
the top of energy barrier at a point beyond the midpoint
between the two bond-center sites, which corresponds to
0 = 55 . The configurations of the oxygen atoms are
shown in Fig. 3 for several values of 0. The diffusion
path is primarily in the (110) plane. As the oxygen atom
moves from the original equilibrium site, one of the Si-0
bonds is stretched, but is not broken until the oxygen
moves through the saddle point at 0 = 78'. Beyond the
saddle point, the stretched bond is broken and a new
Si-0 bond is formed with a silicon atom in the other
(111)direction, thus forming a new bridging configuration

),[00 1] [00 1]

[ 10+ [110] [-1 1
Og]

FIG. 2. The computed energy of the system as a function of
0. The saddle point configuration occurs at 0 = 78'.

~.(( ). ~) = E((r;)) + ~g(r20 r21) + 2 u g (r20 r21)

(15) e=55&
:lid:::.:;:1

minimized by the steepest descent method with w cho-
sen to satisfy the error criteria that the deviation from
the desired value of the angle is less than 0.1' and the
total contribution of the last two terms in Eq. (15) is
~ 2.0 && 10 5; the value w = 1000 satisfied these condi-
tions. In Eq. (15), A is the Lagrangian multiplier,

I'L' B=80o

g(r20 ~21) r20 r21/r20r21 cos ~ (16)
is the constraint function, where r2p is the vector from Si2
to 0 and r21 is the vector form Si2 to Sil (see Fig. 1).
The value of 0 is increased gradually from 0', and the
converged configuration for each 0 is used as the initial
configuration for the steepest-descent minimization at the
next larger value of 0.

The computed energy is shown in Fig. 2 as a function
of 0. The saddle point configuration is predicted to
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FIG. 3. The configuration of the oxygen and neighboring
silicon atoms are shown for 0 = 0, 55', 78', 80', and 96',
respectively, as viewed at the [110]and [—110] directions. The
pictures in the right column correspond to the side view of
those in the left column, and show that the oxygen atom (in
lighter grey and pointed to by an arrow) is in the (110) plane.
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using this saddle point configuration and jump rate
theory is in excellent agreement with experiments. Our
calculations demonstrate that it is possible to model
accurately intrinsically quantum processes using classical
potential by introducing components which effectively
capture the main features of the processes. In the
specific case of oxygen in silicon, the main features are
charge transfer and bond formations which are described,
respectively, by the charge-transfer function and the bond-
softening function in our potential.

We thank MEMC Corporation, Sematech, Shin-Etzu
Handotai Company, and Wacker Chemitronic for financial
support of this research.

FIG. 4. Comparison of the calculated expression for the
oxygen diffusivity with Mikkelsen's best fit to the data [10].

for the oxygen. In the diffusion process, only the three
silicon atoms involved in the 0-Si bonds are significantly
displaced from their lattice positions.

The frequencies v,' and v,' are calculated by direct
diagonalization of the Hessian matrix of the system at the
equilibrium and saddle point configurations. The Hessian
is calculated using a centered finite difference method
with a step size in the coordinate positions of 3 X 10 4

in the SW units. The jump frequency is computed as
v = 11.5 THz, which is of the typical order of magnitude
of attempt frequencies for interstitial impurities [17,23].
In the equilibrium state, the distance between two nearest-
neighbor bond-center sites is l = 1.91 A.. Using Eqs. (12)
and (13), the diffusion constant is predicted as

D = 0.025exp( —2.43 eV/kI&T) cm /sec, (17)
which is plotted in Fig. 4 together with the
experimental fit of Mikkelsen [10], D = 0.13
X exp( —2.53 eV/k»T) cm /sec. The agreement is
excellent although the prefactors and energy barriers
are different. The difference is well within range of
experimental error in the data. Indeed, Newman, Tucker,
and Livingston [9] reported an Arrhenius fit of the form
D = 0.02exp( —2.42 eV/k»T) cm2/sec to data from an
experiment relating to the kinetics of oxygen precipi-
tation. Their expression is virtually the same as ours.

In summary, we have presented a theoretical calculation
of oxygen diffusion in silicon crystal using an empirical
potential constructed to describe the complicated charge-
transfer and bond-formation process between silicon and
oxygen atoms. We found the oxygen jumps from a
bond-center site to another bond-center site along a
path in the (110) plane. Contradictory to current belief,
the saddle point configuration is not predicted to be
exactly at the midpoint between these sites, because
the oxygen atom has to break a Si-0 bond before it
is able to form a new bridging configuration with the
other silicon atom. The diffusion coefficient predicted
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