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Exact Results for the Adsorption of a Flexible Self-Avoiding Polymer Chain in Two Dimensions
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We derive the exact critical couplings (x",y,*), where y,*/x* = Ql + ~2 = 1.533. . . , for the polymer
adsorption transition on the honeycomb lattice, along with the universal critical exponents, from the
Bethe ansatz solution of the O(n) loop model at the special transition. Our result for the thermal

1

scaling dimension, and thus the crossover exponent P = 2, is in agreement with an earlier result based
on conformal invariance arguments. Our result for the geometric scaling dimensions confirms recent
conjectures that they are given by hz+13 in the Kac formula.

PACS numbers: 61.41.+e, 64.60.Cn, 64.60.Fr, 64.60.Kw

A long flexible polymer in a good solvent with an attrac-
tive short-range force between the polymer and the con-
tainer wall is known to undergo an adsorption transition
[1—4]. A standard model for this phenomenon is a self-
avoiding walk (SAW) on a d-dimensional lattice interact-
ing with a (d —1)-dimensional substrate. In the lattice
model, the SAW has a Boltzmann weight x per monomer
(in the bulk), with weight y per adsorbed monomer (on
the substrate). At the adsorption transition y,

* the number
of adsorbed monomers scales with the total length I as
L, —L~, where @ is a crossover exponent. The polymer
is in the adsorbed phase for y ) y' and the desorbed phase
for y ( y,*, where the surface attractions are not effective.
In the language of surface critical phenomena, the adsorp-
tion transition is a special transition [5].

Two-dimensional polymers are not without experi-
mental interest [6] and the above model has been widely
studied via a number of techniques (see, e.g. , [4], and ref-
erences therein). These include transfer matrix calcula-
tions [7], series expansions [8], and a scanning Monte
Carlo method [9]. In two dimensions there is a wealth
of exact results for the ordinary surface transition (y (
y,*) from conformal invariance arguments [4,10—12] and
more recently from exact Bethe ansatz calculations [13].
More generally, these results have been obtained for the
O(n) model, from which the configurational properties of
SAWs follow in the n 0 limit [1].

The situation is not so clear for the special transition.
There is a conformal invariance result for the thermal
scaling dimension X„which leads to the crossover ex-

1
ponent @ =

z [14]. However, the two-variable nature of
the special transition poses problems for numerical stud-
ies, as errors in the estimates of the critical exponents are
compounded by errors in the location of the critical point
(x",y,*). Recent simulations on the square lattice have in-
dicated a result significantly larger then the conjectured @
value [9].

Here we derive the exact critical couplings (x*,y,*)
for the polymer adsorption transition on the honeycomb
lattice, along with the universal critical exponents, from
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where 3Vq, Dent-„and 3V, are the total numbers of vertices
(either full or empty) of class (i), (ii), and (iii). Apart from

FIG. 1. The open honeycomb lattice.

the Bethe ansatz solution of the O(n) loop model at the
special transition.

Our starting point is the partition function of an
O(n) loop model [15] defined on the honeycomb lattice
depicted in Fig. 1,

Z,.„p ——g x'y'n',

where the sum is over all configurations of closed and
nonintersecting loops. Here P is the total number of
closed loops of fugacity n in a given configuration. In the
limit n ~ 0 this reduces to the required SAW generating
function, with x the fugacity of a step in the bulk and y
the fugacity of a step along the surface. Here L is the
length of a walk in the bulk and I., is the length of a walk
along the surface of the strip.

The partition function can be conveniently rewritten in
terms of the Boltzmann weights of the empty vertices.
To do this we need to distinguish between three classes of
vertices: )—and -( which appear (i) in the bulk and (ii) on
the surface, and (iii) ) and ( on the surface. For each class
we define the weights tb, tb, and t„respectively. We then
consider
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harmless normalization factors, the two partition functions
are equivalent if tb = tb, along with the identification

x = 1/tb, y = 1/Qt6t, , (3)
where L = Lb + Lb.

The configurations of the loop model can be mapped
to those of a three-state vertex model in the standard
way [16—18]. The allowed arrow configurations and their
corresponding Boltzmann weights are shown in Fig. 2.
Here the phase factors are such that n = s + s
—2cos4A. The integrable bulk weights of this honeycomb
lattice model are known to follow in a particular limit
of the Izergin-Korepin model —a more general three-state
model defined on the square lattice [18,19].

For the open boundary conditions of interest here,
the integrability of the vertex model can be examined
in a systematic way by making use of reAection or
K matrices which satisfy the boundary version of the
Yang-Baxter equation. In order to do this, we adapted
the Skylanin construction of commuting transfer matrices
[20] to the present geometry [21—23]. In particular, we
found that the known diagonal reflection matrices for the
Izergin-Korepin model [24] lead to two integrable sets
of boundary weights which preserve the O(n) symmetry
[22,25]. For each case tb = tb = 2cosA. Thus from (3)
the critical bulk fugacity is

1/x* = Q2 ~ Q2 —n, (4)
which is the well-known bulk critical value [16].
The SAW point occurs at A = vr/8, where x' =
1/Q2 + ~2 = 0.541 196. . . .

The two integrable sets of boundary weights are [22]
sin2A

5a
sinA

(5b)

Thus from (3) case (5a) gives the critical surface fugacity
yo = x* and corresponds to an integrable point on the
ordinary transition line. However case (5b) is new, and
corresponds to the special transition, with

y,
*' = (2 —n) (6)

in the so-called dilute phase 0 ( A ( ~/4 (—2 ( n ( 2)
In contrast the surface coupling is complex valued in
the dense phase (zr/4 ( A ( vr/2). We thus confine

our attention here to the dilute region applicable to the
adsorption transition. At n = 0 we have y,

* = 2
0.840896. . .. This exact result should prove to be a
valuable benchmark for future numerical studies of the
adsorption transition. For n = 1 the special transition
is located at y,

' = l which corresponds to infinitely
strong surface couplings, as expected. Our result is also
consistent with a recent argument that although there is
no special transition for the Ising model, there is a special
transition in the geometrical O(n) model for n ) 1 [26].
We see from (6) that the critical coupling diverges at
n = 2, and becomes complex for n ) 2.

The central charge c and scaling dimensions X; defining
the critical behavior of the model follow from the domi-
nant finite-size corrections to the transfer matrix eigenval-
ues [27—29]. The central charge follows from the free
energy per site, ftv = N ' lnAp, via

f, ~pc
(7)

Gt(x —y) —~x —
y~

'x'. (9)

These scaling dimensions are associated with the largest
eigenvalue in each sector of the transfer matrix. In par-
ticular, the spin-spin correlation is related to X~. On the
other hand, the thermal scaling dimension X„correspond-
ing to the energy-energy correlation, is related to an exci-
tation in the largest sector of the transfer matrix. Given
Xl and X„the surface critical exponents follow from [4,5]

Xt ——zt~~/2 = Pt/v = [2 + (y —2y~)/v]/2, (10)

X, = 1 —P/v.
In terms of the more standard parameter g, where 4A +
7rg = 2', the bulk exponents y and v are given by [16]

Here f, is the surface free energy and g = ~3/2 is a
lattice-dependent scale factor. The scaling dimensions are
related to the inverse correlation lengths via

g,
' = ln(Ap/A, ) = 27rfX;/N.

A set of scaling dimensions of interest appear in
the so-called watermelon correlator, which measures the
geometric correlation between 4 noninteracting SAWs
tied together at their extremities x and y, which for surface
critical phenomena are near the boundary of the half-plane
[12]. It has a critical algebraic decay,

tg st 1 1 1 1

t, s

FIG. 2. The allowed arrow configurations and corresponding
Boltzmann weights for (a) bulk and (b) surface vertices.

sinh(u, + i3A/2) sinh(u, —i3A/2)
A =

sinh(u~ + iA/2) sinh(uj —iA/2)
(13)

where the u, follow as roots of the Bethe ansatz equations

y = (4g + 1/g)v (12)
4(g —1)

For case (5b), at the special transition (x', y,*) we have
obtained the Bethe ansatz solution for the eigenvalues of
the transfer matrix [22],

2027



VOLUME 74, NUMBER l l PH YSICAL REVIEW LETTERS 13 MARCH 1995

cosh(u, —iA/2) ~ sinh(uj —iA/2) sinh(u, —i3A/2)

cosh(u, + iA/2) sinh(u, + iA/2) sinh(u, + i3A/2)

sinh(u —ut, + iA) sinh(u + ut, + i A) sinh(u —ut, —i2A) sinh(u + ut,
—i2A)

(14)
sinh(u, —uk —i A) sinh(u, + ut,

—iA) sinh(u, —uk + i2A) sinh(u, + ut, + i2A)

Xt = 4g82 + —,(g —1)4

follows from ht+1 t in the Kac formula [12],
e' —(g —I)'

hj, q
= 4gP 2P9' +

4g

(18)

(19)

Here N is the width of the strip (e.g. , N = 8 in Fig. 1) and
m labels the sectors of the transfer matrix, with I = N for
the largest eigenvalue Ao. A more convenient sector label
is4 =N —m.

The Bethe ansatz equations differ from those obtained
for case (5a) in the squared prefactor on the left-hand side,
which have the cosh functions replaced by sinh. This
change is sufficient to alter the finite-size corrections to
the eigenvalues and thus the operator content. For case
(5a), at the ordinary transition, the Bethe ansatz roots
for the largest eigenvalue are uniformly distributed along
the real (positive) axis [13]. In contrast, at the special
transition we find that the root distribution includes an
elementary one-string excitation, located at u& —i (~/4 +
A/2). To derive the central charge via (7) we thus
adopt the analytic method [30], which avoids the explicit
manipulation of root densities. Details of the calculations
will be presented elsewhere. The bulk free energy f
is as derived previously [13,17], while the surface free
energy f, differs from that at the ordinary transition [13].
The result is cumbersome and rather unilluminating in
the present context. However, at n = 0, it reduces to
f, = —21n(1 + ~2). In fact, at this point, we observe
that Ao = (2 + ~2)~/(I + ~2) exactly.

For the central charge, we derive the same result,

c = 1 —6(g —1) /g, (15)
as for the ordinary transition [10,12,13]. We find that
the thermal scaling dimension is associated with an
elementary two-string excitation, with

2
X, = ——1, (16)

in agreement with the conformal invariance result [14].
This result has more recently been obtained from a ther-
modynamic Bethe ansatz calculation from a conjectured
boundary S matrix [26]. From (11) and (12) the result

1

(16) leads to the crossover exponent P = 2.
The root distributions for the eigenvalues defining the

geometric scaling dimensions are again real, with

Xt ——4g(8 + 1)' —;(8+ I)+, (17)
9 —(g —I)'

where 4 = 1, 2, . . .. These dimensions are to be compared
with those at the ordinary transition, where the result
[12,13]

For the adsorption transition, (17) gives

Xt = gsZ(8
—2) + —, (2o)

[I] P. G. de Gennes, Scaling Concepts in Polymer Physics
(Cornell University Press, Ithaca, 1979).

[2] E. Eisenriegler, K. Kremer, and K. Binder, J. Chem. Phys.
77, 6296 (1982).

[3] J.M. Hammersley, G. M. Torrie, and S.G. Whittington,
J. Phys. A 15, 539 (1982).

[4] K. De'Bell and T. Lookman, Rev. Mod. Phys. 65, 87
(1993).

[5] K. Binder, in Phase Transition and Critical Phenomena
edited by C. Domb and J. L. Lebowitz (Academic,
London, 1983), Vol. 8, p. l.

3
at n = 0 (g = -). The first two values are X~ =

—
24 and X2 = X, = 3, with the exact exponents for the

two-dimensional polymer adsorption transition following
1

from (10) and (11). In particular, zi(~ 12 and the
93

susceptibility exponent y1 = «. Guim and Burkhardt
[7] originally noted that these were possibly the exact
values, as their finite-size scaling estimates for X1 and
X2 were compatible with X~ = hq+] 3 in the Kac formula.
Indeed we confirm that the more general O(n) result (17)
agrees with ht+13. Note that the thermal dimension (16)
also belongs to the same family of scaling dimensions,
since X, = h] 3. We believe that our results exhaust the
complete operator content of the O(n) model at the special
transition.

More recently the her+13 result has been conjectured to
be correct by Fendley and Saleur [26] who argued that the
boundary operator +AD+13 propagates down the strip at the
special point. In general, our exact results lend further
weight to their claim that the spin degrees of freedom of
the Kondo problem can be considered as the n = 2 limit
of the special transition of the O(n) model [26].

So far we have only considered the O(n) model with
boundary conditions that are symmetric with the left and
right boundaries of the strip. More generally, it is possible
to obtain the Bethe ansatz solutions of the O(n) model
with nonsymmetric boundary conditions by using suitable
choices of the reAection matrices. In this way we expect
to test recent conformal invariance results for the O(n)
model with mixed boundary conditions [31].

It is a pleasure to thank A. L. Owczarek and J. Suzuki
for helpful comments. This work has been supported by
the Australian Research Council.

2028



VOLUME 74, NUMBER 1 1 PHYSICAL REVIEW LETTERS 13 MARcH 1995

[6] R. Vilanove and F. Rondelez, Phys. Rev. Lett. 45, 1502
(1980).

[7] I. Guim and T. W. Burkhardt, J. Phys. A 22, 1131 (1989).
[8] D. Zhao, T. Lookman, and K. De'Bell, Phys. Rev. A 42,

4591 (1990).
[9] H. Meirovitch and I. Chang, Phys. Rev. E 48, 1960 (1993).

[10] J.L. Cardy, Nucl. Phys. B240, 514 (1984).
[11] T. W. Burkhardt and J.L. Cardy, J. Phys. A 20, L233

(1987).
[12] B. Duplantier and H. Saleur, Phys. Rev. Lett. 57, 3179

(1986).
[13] M. T. Batchelor and J. Suzuki, J. Phys. A 26, L729 (1993).
[14] T. W. Burkhardt, E. Eisenriegler, and I. Guim, Nucl. Phys.

B316, 559 (1989).
[15] E. Domany, D. Mukamel, B. Nienhuis, and A. Schwim-

mer, Nucl. Phys. B190, 279 (1981).
[16] B. Nienhuis, Phys. Rev. Lett. 49, 1062 (1982).
[17] R. J. Baxter, J. Phys. A 19, 2821 (1986).
[18] B. Nienhuis, Int. J. Mod. Phys. B 4, 929 (1990).
[19] A. G. Izergin and V. E. Korepin, Commun. Math. Phys.

79, 303 (1981).
[20] E. K. Skylanin, J. Phys. A 21, 2375 (1988).

[21] C. Destri and H. J. de Vega, Nucl. Phys. B374, 692 (1992).
[22] C. M. Yung and M. T. Batchelor, A.N.U. Report

No. MRR042-94, hep-th/9410042 (unpublished).
[23] We note that another orientation of the honeycomb strip

geometry can also be treated along the present 1ines.
[24] L. Mezincescu and R. I. Nepomechie, Int. J. Mod. Phys. A

7, 5231 (1991).
[25] These correspond to reflection matrices for which the

corresponding spin chain is not quantum group invariant
and thus were seemingly of little interest.

[26] P. Fendley and H. Saleur, J. Phys. A 27, L789 (1994).
[27] H. W. J. Blote, J.L. Cardy, and M. P. Nightingale, Phys.

Rev. Lett. 56, 742 (1986).
[28] I. Affleck, Phys. Rev. Lett. 56, 746 (1986).
[29] J.L. Cardy, Nucl. Phys. B270, 186 (1986).
[30] See, e.g. , S.O. Warnaar, M. T. Batchelor, and B. Nienhuis,

J. Phys. A 25, 3077 (1992); A. Klumper, T. Wehner, and
J. Zittartz, J. Phys. A 26, 2815 (1993), and references
therein.

[31] T. W. Burkhardt and E. Eisenriegler, Nucl. Phys. B424,
487 (1994).

2029


