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Nonlinear Resonant Absorption of Surface Magnetohydrodynamic Waves
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We have derived two coupled equations that describe resonant absorption of surface magnetohydrody-
namic (MHD) waves in the nonlinear regime. It turns out that the evolution of our system is drastically
affected by the nonlinearity. The relevance of our results for the Alfven wave heating scheme of fusion
plasma as well as for the heating of the solar corona by surface MHD waves is discussed.

PACS numbers: 52.35.Mw, 52.35.Bj, 52.35.NX, 52.50.Gj

Resonant absorption of surface magnetohydrodynamic
(MHD) waves and the related issue of spectral properties
of Alfven waves in inhomogeneous plasmas have been
studied by numerous authors; see, e.g. , Refs. [1—4]. The
works have been directed towards applications on heating
of the solar corona [1,2], on heating of laboratory plasmas
for controlled thermonuclear fusion research [3],or mainly
concerned fundamental theoretical issues [4].

Almost all previous authors have considered the lin-
ear regime. However, Alfven wave heating experiments
have been performed which indicate that the driven Alfven
waves may undergo a nonlinear evolution [5]. This is not
surprising, considering the field amplification that takes
place at the resonance surface, where the local Alfven
wave frequency matches the surface wave frequency. In
the present Letter we will thus study nonlinear resonant
absorption of surface MHD waves. As we shall demon-
strate, the nonlinearities change the physical picture dra-
matically. In contrast to the linear case, where the sur-
face wave energy is irreversibly transferred to the resonant
Alfven waves, a large enough nonlinearity leads to oscil-
lations of the energy between the surface wave and the
resonant Alfven waves.

For the sake of mathematical simplicity we have used
the ideal incompressible MHD equations. As the plasmas
of interest are compressible, this will limit the direct
applicability of our results. However, our choice of basic
equations is supported by the fact that compressibility
effects, at least in the linear regime, are irrelevant around
the resonance surface [6], where most of the interesting
physics takes place. A discussion of relevant physical
effects not described by our simple model will be given
at the end of this Letter.

In order to study resonant absorption of surface MHD
waves we assume that the background geometry is as
follows: Inside a plasma slab, ~x~ & x~, the unperturbed
density, pressure, and magnetic field are given by p;, p;,
and 8 = 8;z, respectively. Outside the slab ~x~ ) x2,
the corresponding values are p„p„and 8 = B,z. The
two transition layer regions x~ ( ~x~ ( x2 are assumed
to be thin, i.e. , hx —= ~x2

—
x~~ && x&. The background

quantities must satisfy the pressure balance equation
8 (x) 8; 8,p(x)+ =p + ' =p. + ', (I)8~ ' 8~ ' 8~ '

A, —8(x)%', = 'Ir, A, —A, 'Ir, , (4)

where P (= p + 8 /8m)denotes the su.m of thermal
and magnetic pressures, and indices x, g, and t denote
partial x, z, and t derivatives, respectively. The quadratic
nonlinear terms will create low frequency as well as
second harmonic perturbations. We thus make the ansatz
Q(x, g, t) = Qlol(x, t) + Ql'1(x, t) exp[i(kg — cot)] +
Ql21(x, t) exp[i(2k' —2cot)] + cc where cc denotes com-
plex conjugate and Q represents a particular oscillating
quantity. The amplitudes are assumed to be slowly
varying, i.e. , ((BQl'1/Bt)/toQl'l~ && 1 for j = 0, 1, 2. We
will also take the transition layer to be thin compared to
the wavelength, 2~/k, and consider the excursion length
of the particles in the wave field to be much less than
Ax, i.e. , ~V, /coax~ && 1. By successive approximations
making use of our small parameters, we find after lengthy
but straightforward calculations

and

M
~ l

e(x)%" + P, + 2icop(x)'Ir, + —P, = 0
k

(5)

s(x)'Ir, + ktoP + 2i co p(x) Ir„+ ikP,

, [8'(x)],V'9,*, , (6)
47T ccP

but may otherwise be taken to connect the unperturbed
values in the inside and outside regions of the plasma slab
in an arbitrary manner. For simplicity we restrict ourselves
to wave propagation along the unperturbed magnetic field.
We can then introduce the velocity and magnetic potentials
& = (0, —%, 0) and A = (0, —A, O), defined according to
v = V X % and B = 8(x)i + V X A. The equations of
ideal incompressible MHD can then be written [7]

p%"„+ P, — B(x)A„= [A,A„—A, A„]
1 1

4~ " 4'
+ p[%".+„—+,0„],

(2)
1—p%„+ P, — [8,(x)A, —8(x)A„]4~

1
[A,A„—A, A„] + p[%,%.„—W, %„], (3)4~

1994 0031-9007/95/74(11)/1994(4)$06. 00 1995 The American Physical Society



VOLUME 74, NUMBER 1 1 PH YS ICAL REVIEW LETTERS 13 MARcH 1995

where only the largest nonlinear term, that is due to sec-
ond harmonic generation, has been kept. For notational
convenience we have dropped the superscript (1) on
all the amplitudes in Eqs. (5) and (6). When deducing
Eqs. (5) and (6) we have assumed the linear scalings
(and the lowest order perturbation expansion for W(2),
xIt(pl, etc.) to be valid as order of magnitude estimates
[8], i.e., we have xlt, —k'I" (x~) (e "('l ' —1)/a(x),
where a(x) = [1 —k Vz (x) /~~]/2. This leads to
the estimations 'I'x —k WW, /tp, xlfx —k 'Ij'If,*/tp,(2) 2 (o)

P —Axes p (x) 9'„etc. around the resonance. The reason
that nonlinear terms are included in Eq. (6) but not in
Eq. (5) is that the magnitude of the ratio of nonlinear
and linear terms in Eq. (5) are of higher order in a kAx
expansion compared to that in Eq. (6). Note that we can
use pp(x, t) = pp(x, t = 0) = p(x) in Eqs. (5) and (6)
as the nonlinear low frequency density modulations are
comparatively weak. The function e(x) describes the
coupling to the resonant Alfven waves [9] and is given by

k'V„'(x) ~
e(x) = p(x) co'i 1—

)
where V~ ( = B(x) /2[~p(x)]'i') is the Alfven velocity.
Thus the local Alfven wave frequency kV&(x) coincides
with the surface wave frequency ~ at the resonance
surface x = x„, defined by e(x„) = 0. As a consequence,
the surface wave excites Alfven waves around x = x, ,
resulting in a strong field amplification of W that must
be taken into account when deducing Eq. (6).

We proceed by making the ansatz

xIJ qy (t)
—k(ixi —x2)

for xq (x~, and take

p p (t)
—k()xi —xx)

(9)

W = W, (t) sinh(kx), P = P, (t) cosh(kx),

inside the plasma slab ~x~ ( x~. Thus we are using the
same x dependences as for a linear slow sausage mode,
which is natural as we are not interested in nonlinearities
in the homogeneous regions. In order to find the relations
between W2 and P2, as well as between W» and P»,
we substitute the ansatz (7) and the ansatz (8) into
Eqs. (5) and (6), where the nonlinearity can be neglected.
Combining the resulting equations with the two trivial
identities

——1

cosh(kx~) p2cosh(kx~) p~ sinh(kx~)
a =

2 2 + 22M 2

provided co and k fulfill the dispersion relation

e2 + el coth(kxi) + k
X2

e(x) dx = 0. (12)

Here el =—e(~p, k, x|), eq ——e(co, k, xq), and the last term
is a correction of order kAx to the usual sharp boundary
dispersion relation [10]. When deriving Eqs. (11) and
(12) we have used that 0' and P are approximately
constant over the transition layer, i.e., that the right
hand sides of Eqs. (9) and (10) are correction terms of
order khx. Equation (11) describes the influence of the
Alfven wave field W, (corresponding to the velocity in
the z direction) that essentially is localized around the
resonance, on the surface wave field P], which determines
the large scale structure outside the boundary. Next, we
note that within the transition layer we can approximate
P(x, t) with P~(t) in Eq. (6), and use that the last term on
the left hand side always is much smaller than the second
term. Thus we obtain

2i~p(x)%, + e(x)alt, + keep)

k4

, [B'(x)j,W'V.*, . (13)
477 M

Equation (13) describes the evolution of the Alfven wave
field 'Ij', which is driven by the surface wave field
P~. The two coupled equations (11) and (13) constitute
one of the main results of this Letter. It is straightforward
to generalize these equations to include the effects of
propagation, i.e. , z-dependent amplitudes; see Ref. [11].
In the linear approximation equations (11) and (13) give
the same result as previous papers [4] studying resonant
absorption of surface MHD waves, although, as far as we
know, the form of our equations is new. A numerical
study of the linearized version of Eqs. (11) and (13) thus
gives the well known result of an irreversible energy fIow
from the surface wave field P~ to the Alfven wave field
W„resulting in a constant damping rate of the surface
wave in the time-asymptotic limit.

Before we start a numerical investigation of the non-
linear system, it is instructive to consider the energy con-
servation properties. Multiplying Eq. (11) by P~*, adding
the complex conjugate of the resulting equation, and ap-
plying Eq. (13) we obtain

and kM ipse i
+ 2aCd2 p(x)ixlx, i'dx = 0. (14)

P,- dx,

where

bP)
la

Bt
W. dx,

where 9"~ = W(x~) and P~ = P(x|), we obtain the evolu-
tion equation

When deriving Eq. (14) a term due to the nonlinearity
has been omitted. Whenever the amplitude of the second
harmonics is much smaller than the amplitude at the
original frequency, which is a necessary condition for
the validity of Eqs. (11) and (13), the contribution to
Eq. (14) from the nonlinearity is indeed negligible, as is
verified by our numerical calculations. All other amplitude
restrictions we have used in the derivation are also seen to

1995



VOLUME 74, NUMBER 1 1 PHYSICAL REVIEW LETTERS 1 3 MARcH 1995

bee fulfilled. Apart from a normalization, it is clear that
the first term represents the energy of the surface wave,
whereas the second term is the energy contribution from
the Alfven waves localized in the transition layer, i.e., the
sum of Alfven wave energy and surface wave
conserved.

Next, we shall solve the coupled equations (11) and

(13) numerically. We use values of the unperturbed
quantities that are appropriate for photospheric solar
conditions. For a magnetic flux tube we can take
B; = 1000G, B, = 10G, xi/Ax =20 =0.62

dyn cm, p, = 4.60 X 10 dyn cm and p,
5.13 X 10 ' cmg, resulting in a total pressure
P = 460 x 4.60 X 10 dyn cm . The density ratio p, /p; = 6—2

yields p; = 0.855 X 10 g cm . If we take the
half slab width to be xi = 50 km (5 X 10 )
I = 1.6 x.6 X 10 cm (A = 3.93 X 107 cm), the fre-
quency ~ can be calculated from the linear dispersion
relation (12) and its value is 0.219 s '. These data
will be used throughout this Letter. The boundary
conditions are that %" and 'P are co tare continuous at x = x] .
When generating the curves in Fig. 1, the initial con-
ditions for +,(x) are chosen according to 4', (x, 0) =
—kcuPi/[e(x) + 2t'@cup(x„)], where y is the time-
asymptotic linear damping [1]. This choice results in a
constant damping rate for the surface wave in the linear
regime, as it corresponds to an assumption that the Alfven
waves have initial phases such that they initially gain
energy from the surface wave for all x values. The evo-
lution of the surface wave field Pi(t) is shown for various

to a completely linear evolution of Pt (t). The other
two curves correspond to various degrees of nonlinear

ehavior. We note that initially the energy transfer to the
Alfven waves is actually enhanced by the nonlinearity.
To understand this we must observe how the 'P, (x)
profile is affected by the nonlinearity, which can be seen
in Figs. 2(a) and 2(b). The linear profile [Fig. 2(a)]
shows the characteristic oscillatory pattern resulting from
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(z —xg)/Az

phase mixing. The narrow peak centered around x,
corresponds to the region in which the Alfven waves have
gained energy from the surface wave on the average.
The nonlinear profile [Fig. 2(b)] is not as sharply peaked
as the linear one, i.e., for comparatively short times the
effect of the nonlinearity is to create a broadened spectra
of Alfven waves that take energy from the surface wave.
However, as we know, the linear damping for long times
depends critically on the possibility for the resonant
Alfven waves at x = x, to gain energy indefinitely. As

is highly peaked around the resonance, and the scale
ength for x variations tends to decrease due to phase

mixing, which accordingly makes W very large, a
fairly modest value of W is enough to cause a nonlinear
detuning of the resonant Alfven waves and th tn us stop

e continued absorption of surface wawave energy. n

agreement with this, the curve in Fig. 1

hi hlig y to nonlinear initial conditions, shows an oscillatory
behavior after the strong damping occurring initially.

Now it turns out that the evolution of the sys-
tem is rather sensitive to the initial conditions in
the nonlinear regime. Thus, by choosing 'lr, (x, 0) =

kcuPi ex—p[2m i(x —xt)/bx]/[e(x) —2i ye@ ( )]
modifying the initial phase relation between the surface
wave and the Alfven waves, we find fi hn a signi cant change
in the nonlinear behavior, as shown in Fig. 3. The dashed
line corresponds to the new modified phase relation,
and the solid line is the same as that shown in Fig. 1 .
Naturally we have used the same initial amplitude of the
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FIG. 1 . The t
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time evolution of the normalized fi ldwave e
( )/ ( ) for various initial amplitudes P;„;, = P(0)/Po: P;„;, =

4.0 X 10 ' (solid line), P;„;, = 1.33 X 10 ' (dashed line and
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FIG. 2. Re[%,(x)]/V„(x&) versus x when r = 200cu ~. a
e strongly nonlinearThe linear case, P;„;, = 4.0 X 10 . (b
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FIG. 3. The time evolution of the normalized wave field
P(t)/P(0) in the strongly nonlinear regime where P;„;, = 4.0 X
10 '. The two curves correspond to different initial phase
relations between the surface wave and the Alfven waves.

surface wave in both cases. Apparently the oscillations
of the surface wave amplitude are much less pronounced
for the new initial conditions. A rough explanation
of this somewhat different behavior can be given as
follows: Details in the initial W, (x) profile lead to
energy gain and energy loss, respectively, for (fairly)
neighboring oscillators, i.e., we get a more mixed Alfven
wave spectra for the new initial conditions. This means
that the energy exchange with the surface wave becomes
less coherent, and consequently the oscillations of the
surface wave amplitude will be smaller. The two curves
shown in Fig. 3 are together quite representative of the
evolution of the surface wave amplitude in the nonlinear
regime. Thus a general property of our system is that the
irreversible energy transfer from the surface wave to
the resonant Alfven waves is replaced by oscillations of
the energy in the nonlinear regime.

A natural question is how dependent our results are
of the highly idealized model we have used. Essentially
the properties of our system depend on three facts:
(1) The existence of a linear Alfven wave resonance;
(2) conservation of the sum of Alfven wave energy and
surface wave energy; and (3) a nonlinear detuning of the
Alfven wave resonance.

If compressibility is introduced, the single resonance of
our Letter splits into two resonances, the so called slow
resonance [2] and the Alfven wave resonance. However,
the energy corresponding to the slow mode also prop-
agates only along the magnetic field. Hence the same
physics as described above is expected for the compress-
ible case. The introduction of finite Larmor radius effects
destroys point (2), however. Because of these effects, the
Alfven waves can propagate away from the resonance,
perpendicular to the magnetic field towards the side of
lower e, and become Landau damped at some distance
from the resonant surface. %'hether nonlinear effects will

still be of importance depends on the ratio between the
excursion length of the particles in the Alfven wave field

and the average Larmor radius of the ions, i.e., a large
enough value of this ratio means that finite Larmor ra-
dius effects can be neglected. The main effect of a finite
resistivity is on the linear Alfven resonance (the effect
on the nonlinear terms is much less important). Natu-
rally this inclusion of a dissipation mechanism destroys
point (2), although such an effect usually is of minor im-
portance compared to the finite Larmor radius effects [6].

Resonant absoprtion is involved in the Alfven wave
heating scheme of fusion plasmas [3], as well as in a
popular theory for the heating of the solar corona [1,2].
Our results suggests that nonlinear effects can be of
importance in these contexts, i.e., that for large surface
wave amplitudes the energy transfer to the resonant
Alfven waves can be obstructed due to nonlinear effects.
In order to make a fully realistic estimate of what the
influence of the nonlinearity may be, more work needs
to be done, however. For example, it is not clear from
our treatment whether the nonlinearities will act to reduce
or increase the absorption rate when finite Larmor radius
effects are comparatively large, as is the case in many
applications. The former alternative seems to be the more
probable, however. Furthermore, the external driving
currents should be included in the fusion application, as
well as the effects of the toroidal geometry.
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