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Dark Photorefractive Spatial Solitons and Photorefractive Vortex Solitons
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We report on the first experimental observations of dark, planar, spatial photorefractive solitons, and
photorefractive vortex solitons that are trapped in a bulk (three-dimensional) photorefractive media.
Both the dark and vortex solitons possess the "signatures" of the photorefractive solitons: they are
independent of absolute intensity, can afford significant absorption, and are inherently asymmetric with
respect to the transverse dimensions of trapping.

PACS numbers: 42.50.Rh

Spatial solitons in photorefractive (PR) materials [1]
have been the object of growing interest during the last
two years. Thus far, three different types of PR solitons
have been investigated. The first type of PR soliton which
has been studied stems from the nonlocal nature of the
photorefractive effect, as manifested in the dependence of
the perturbation in the refractive index on the transverse
derivatives of the light intensity distribution [1,2]. This
type of PR soliton [3—6] exists when an external voltage
is applied to the PR material, after the index gratings have
been formed, but before the external field is screened by
the background conductivity. Solitons of this type are tran-
sient by nature and we refer to their time window of exis-
tence as quasi-steady-state. Their most distinct properties
are (i) independence of the absolute light intensity [1—3]
(for intensities much larger than the dark irradiance) and
(ii) the capability of trapping in two transverse dimensions
[3—5]. The second type of PR soliton, which we call the
screening soliton [7], appears in the steady state after the
external field is screened, nonuniformly, due to the trans-
versely nonuniform intensity distribution. This effect is
local and results in an index perturbation that is inversely
proportional to the sum of the optical and dark irradiances.
Its most distinct properties are (i) dependence on the
ratio between the optical and dark irradiances and conver-
gence to the narrowest size for large ratios and (ii) exis-
tence of bright solitons for a negative perturbation in the
index while dark solitons require a positive perturbation in
the index while dark solitons require a positive perturbation
(this implies that the polarity of the applied field is oppo
site to the polarity required to generate PR solitons of the
first type). The third type of PR soliton is present in mate-
rials that are both photorefractive and photovoltaic. These
photovoltaic solitons [8] stem from photovoltaic currents
that generate (in steady state) an index perturbation analo-
gous to the nonlinearity in a saturable absorber (sometimes

called a thresholding nonlinearity), which is a local effect
as well. Their most distinct property is the dependence on
the ratio between the optical and dark irradiances, the nar-
rowest solitons being obtained when this ratio is between 1

and 2.
In this Letter we report on the first experimental

observation of photorefractive dark solitons and vortex
solitons, both belonging to the first (nonlocal) type.

Photorefractive solitons of the first type evolve when
diffraction is exactly balanced by self-scattering (two-
wave mixing) of the spatial (plane wave) components of
the soliton beam [1,2]. Intuitively, self-trapping occurs
when diffraction (which involves accumulation, by each
plane wave component of a beam, of a phase that is lin-
ear in the propagation distance) is balanced by nonlinear
phase coupling that leaves the complex amplitudes of the
plane-wave components unchanged. Photorefractive grat-
ings, however, typically give rise to amplitude coupling
(energy-exchange interaction) due to a dominant diffusion
transport mechanism for the redistribution of the photo-
generated charge carriers. Inherently, this process cannot
compensate for diffraction since it alters the amplitudes
of the plane-wave components rather than balancing their
phases. The presence of an external bias field, on the other
hand, results in strong phase coupling and is, therefore, re-
quired for the formation of these PR solitons. Our recent
observations of photorefractive bright solitons of the first
type [3,4] revealed that, unlike the Kerr-like solitons, the
PR solitons may be trapped in two transverse dimensions
and maintain their stability. We also presented experimen-
tal results [5] addressing the two-dimensional problem and
pointed out that the trapping is inherently asymmetric with
respect to the two transverse dimensions. We have shown
experimentally that the self-trapping effects in the direc-
tion parallel to the external electric field (x direction) exist
regardless of the size of the beam in the other transverse di-
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FIG. 3. Transverse beam profiles at the output plane of the
crystal, and their corresponding interferograms that manifest
the continuous phase for a Gaussian input beam [(a) and (b)]
and the 7r phase jump at the origin for the diffracted notch (c)
and the dark soliton (d).

FIG. 4. Transverse beam profiles at the output plane of the
crystal for normal diffraction (a), for a dark soliton at lo, 10 Io,
and 100 Ia (b), (d), (f), for the case of self-focusing [at positive
voltages, (c)] and for a vr/2 rotated notch that cannot be self-
trapped (e).

a dark soliton [at V/d = —400 V/cm, Fig. 4(b)]. When
we reverse the polarity of the applied field the notch in-
creases its size significantly while the bright lobes re-
duce their cross sections [Fig. 4(c)]. This is a good in-
dication that for the positive polarity of the field the PR
crystal behaves as a self-focusing medium (which is suit-
able for trapping a bright soliton but not a dark one). An
important signature of nonlocal PR solitons is their inde-
pendence of the absolute light intensity. To verify this
we vary the input power over 2 orders of magnitude [3—
300 pW (intensities of 0.3—30 W/cm ) for the current
experiment of dark solitons, and 0.5—785 p, W (intensi-
ties of 0.05—78.5 W/cm ) for a similar experiment with
bright solitons], and observed no change in the shape or
the size of the dark soliton. Figures 4(d) and 4(f) show
typical soliton beam profiles at 30 and 300 p, W power,
respectively. Note that the time window for the observa-
tion of the soliton is inversely proportional to the optical
intensity which (since the soliton shape is constant within
this entire range) is proportional to the optical power. Al-
though the lower limit of this intensity region should be
the dark irradiance, we are unable to reach it due to de-
tector array limitations (we estimate the dark irradiance to
be much smaller than 10 mW/cm ). The upper limit of
the intensity range is determined by thermal effects which
induce nonuniformities in the index (the upper limit may
be extended using temperature control). All these obser-
vations confirm that the observations are of PR solitons of

1980

the first type. Finally, we rotate the input notch, so that
its cross section is now in the Y direction (perpendicular
to the external field). As clearly seen in Fig. 4(e), self-
trapping effects of the notch cannot be observed even at
higher fields (—1000 V/cm, much higher negative fields
simply depole the crystal). As in the case of the bright
soliton [5], this observation indicates that a beam (or a
notch) that is uniform in the direction parallel to the ex-
ternal field cannot be trapped. We conclude this section
by stating that we have demonstrated a planar dark PR
soliton of the first (nonlocal) type. For comparison with
previous theoretical analyses [10] and observations [11]
of spatial Kerr-like dark solitons we point out the ma-
jor differences in the properties between Kerr-like and PR
solitons: (i) independence of the PR solitons on the light
intensity, including the ahsence of a threshold, (ii) the de-
pendence of the PR solitons on the direction of trapping
(a manifestation of the tensorial nature of the PR effect),
(iii) the possibility of switching from a regime of dark PR
soliton to bright PR soliton regime simply by reversing
the polarity of the applied field, and (iv) the stability of
spatial PR solitons (both dark and bright) to trapping in
two transverse dimensions.

Next, we describe the observation of PR vortex soli-
tons. Optical vortices [12,13] are beams possessing a
uniform amplitude and a phase that varies as exp(imO)
(referring to a transverse, polar, coordinate system of r
and 8), where m is an integer (called the topological
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