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Extracting Messages Masked by Chaos
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We show how to extract messages that are masked by a chaotic signal in a system of two Lorenz
oscillators. This mask removal is done for two different modes of transmission: a digital one, where a
parameter of the sender is switched between two values, and an analog mode, where a small amplitude
message is added to the carrier signal ~ We achieve this without using a second Lorenz oscillator
as a receiver, and without doing a full reconstruction of the dynamics. This method is robust with
respect to transformations that impede the unmasking using a Lorenz receiver, and is not affected by
the broadband noise that is inherent to the synchronization process. We also discuss the limitations of
this way of extraction for messages in high frequency bands.

PACS numbers: 05.45.+b

There has been some recent interest in the idea of using
enslaving chaotic variables [1] as a way of transmitting
information [2—7]. The principle used here is that if we
have two identical nonlinear low-dimensional dynamical
systems, where one of the variables from the first system
enslaves the second, this chaotic variable can be used as a
carrier for a message. The use of these chaotic carriers
in a communication channel is intended, among other
reasons, for security [8]. The actual transmitted signal
is broadbanded and should look at first sight like some
type of noise. It is also expected that, since the carrier is
able to synchronize only identical dynamical systems, i.e.,

identical sets of equations [9] with identical —or at least
extremely close —parameters, any eavesdropper will be
lost in the infinite maze of possible dynamical models and
parameter sets and will not be able to extract the message.

Our purpose in this Letter is to show that this type
of masking can be easily removed, at least in some of
the proposed implementations [3,4], and that this can be
achieved without resorting to a nonlinear receiving sys-
tem. The origin of these weaknesses in the masking is that
efficient message reconstruction requires the existence of
a low-dimensional attractor and a fast relaxation of the
dynamics to that attractor, at least in the time scales used
in the message. This allows a third party to do a partial
reconstruction of the dynamics, using some return maps.
By analyzing the evolution of the signal on the attracting
sets of those maps, the message can be extracted. This
process does not use at any moment the full reconstruc-
tion of the continuous dynamics of the sender [10],a more
time-consuming procedure that requires embedding in a
space of larger dimensionality than that of the intended
receiver.

To show how this unmasking is done, we will use com-
puter simulations of the sender-receiver circuits used in
Ref. [3]. These circuits are built so that their dynamics

constitutes a scaled implementation of the Lorenz equa-
tions [11]. The equations for the sender are
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while for the receiver we have
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Here 7- = Kt, where E is an overall scale factor. The
values used here are those from Ref. [3]: o. = 16.0, r =
45.6, and b = 4.0. The scale factor has been set to
K = 1/2505 [12], so that the time scale agrees with the
one used in the figures of the cited reference.

In the second set of equations, the use of x] instead
of x2 in Eqs. (5) and (6) has the effect of enslaving the
second oscillator to the first. This means that if we start
the two oscillators from different initial conditions, but
using in both the same set of parameters, the variables
in the receiver will soon approach the values of those of
the sender. The equation for x2 in the receiver serves as
a check of this enslavement, since the process makes x2
approach x].

The actual transmission of data is implemented in
one of two ways. The first one, digital, changes the
parameter b in the equations of the sender between its
reference value b = 4.0 and a shifted one of b = 4.4.
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The corresponding parameter in the receiver is kept
fixed at the reference value, giving as a result that the
oscillators synchronize when the parameters are equal and
are frustrated when they are different. This frustration
is manifested in the squared difference (x2 —xi), which
presents persistent fluctuations when the two b 's are
different. Examples of how this process works are given
in Refs. [3,5].

The second option for transmission of messages is to
add a small-amplitude analog message m(t) to the variable
xI(t) we get from the sender, producing a modified drive
s(t) = x~(t) + m(t). This new drive is fed to the receiver.
A synchronization of sorts is achieved, but it is far
from perfect, since the incoming signal is not exactly a
variable of the Lorenz system. However, the frustration
in the synchronization process can still be used as a
way of recovering the message, using for this purpose
the difference s(t) —x2(t). This process, however, is
nontrivial. The difference between drive and response
does not exactly reproduce the added message m(t), and
the correlation between the two is strongly dependent on
the frequencies involved. This happens because, as can
easily be seen in any numerical simulation, the error in
the synchronization process decays in its own time scale,
and not monotonically. Given initially unsynchronized
oscillators, for the parameters we are using here, the
difference x2 —

x& decays in a time scale of roughly
10 4 sec, and presents oscillations with a broad spectrum
of frequencies, with a peak around fo = 3 kHz.

This synchronization delay affects the quality of the
recovered message. For frequencies comparable with
those predominant in the synchronization noise, the recon-
structed message gets a large admixture of noise and does
not reproduce the message well. For smaller frequencies
one finds that the reconstructed message contains a broad
spectrum of frequencies above the transmitted one, and
that the oUtput approximately reproduces the input mes-
sage only if we perform a low pass filtering.

For very high frequencies, well above fo, a different
phenomenon occurs. The period of the message is
much smaller than the decay time of the synchronization
process, and the message and the synchronization-
frustration mechanism decouple. This makes the
recovered message practically identical to the original
one. However, this decoupling happens at such high
frequencies that a careful eavesdropper may be able to
notice some peaks in an otherwise broad spectrum, this
being so because the power spectrum of the Lorenz
oscillator is quite low at high frequencies.

Our approach to this problem comes from the discovery
by Lorenz [11]that, by following just one of the variables
in the set of equations (1)—(3), one can produce a return
map where the dynamics is attracted to an almost 1D
set. Following this lead, we constructed the following
return map from the x(t) variable in the Lorenz oscillator.
Starting from some arbitrary point in time, define t, as the
time when x(t) reaches its nth (local) maximum, and X, as
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FIG. 1. Attractors of the return maps obtained from the
maxima and minima of x(t) in the Lorenz oscillator. Here
we have superimposed the attractors for the maps A„vs B„and
—C„vs —D„, whose definitions are given in the text. The three
segments of the attractor are labeled for later convenience.

the value of x at that moment. Similarly, define another
return map by setting u as the time when x(t) reaches
its mth local minimum, and Y as the value of x at that
moment. Using these discrete values we can construct
the return maps X„+i vs X„and Y +] vs Y . These
two maps have attractors that look almost 1D. Under
the transformation Y —Y the attractor for the Y map
is identical to that of the X map. This is due to the
fact that the underlying dynamics is invariant under the
transformation x ~ —x, y ~ —y, z ~ z, and therefore
the maxima of x(t) and the minima of x(t) —give the same
return map.

We will not use these two return maps directly;
after some experimentation we have found that we get
better results using the linear combinations A, = (X„+
Y„)/2, B„=X„—Y„, C„= (X„+I + Y„)/2, and D„=
Y„—X„+&~ These are simply the average values of a
consecutive maximum-minimum pair, and the distance
between them. The return maps A„vs B„and C vs
D„have very simple attractors. Each is given by three
smooth almost 1D unconnected segments, and they have
the same inversion symmetry as for the X and Y maps,
so that the A vs B section is identical to the —C vs —D
section. These are shown in Fig. 1.

The key to extracting messages from the chaotic mask,
in this digital mode, is to recognize that a small change
in the parameters of the sender not only frustrates the
synchronization but also affects the attractor obtained in
the return map (here we will just superimpose the A

vs B and —C vs Dreturn m—aps). Since the change
in parameters is small, the only effect is a shift in the
position of the segments of the attractor, while its general
form is conserved. Therefore the attractor obtained when
there is a message shows splitting, with two close parallel
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FIG. 2. Segment 2 of the attractor of the return map, split by
the use of both b = 4 and b = 4.4 in the generation of the
signal. The other two segments of the attractor undergo similar
splitting.

branches appearing where only one segment was found
for the unperturbed Lorenz oscillator (see Fig. 2).

Once we have realized that the switching between the
two parameters means also switching between the two
parallel branches of the attractor, it is a simple task to
go back to the return map and start classifying the points
according to which branch of the attractor they fall in. %'e
use only the points that are clearly separated, and assign
a 0 or 1 value to each branch of a split segment. Then
we read in the time sequences the values t„and u„and
plot the assigned value vs time. The result will probably
be meaningless, since we have done the assignment of
0's and 1's in an arbitrary way. We need to try different
assignments and compare the results. The correct one will
be that which shows always long sequences of only 0's
or only 1's. This is so because the bits of the original
message have to be long enough (in time) to overcome
the synchronization lag, and that gives xi(t) in the sender
enough time to run through several maxima and minima.
Here we have three split segments, which means that we
need to try four possible assignments of zeros and ones.
(The assignment for the first segment is arbitrary. ) In
Fig. 3 we show the messages extracted using the correct
assignment and a typical wrong one.

It is clear from these results that this simple algorithm
permits the reconstruction of the message, except for the
small ambiguity of deciding which bits are identified
as 1's and which as 0's. As a bonus, the out scheme
is robust with respect to transformations that affect the
mask removal using a Lorenz oscillator, something that
we should expect from the amplification of the signal
needed for long-distance transmissions. In particular, the
simple affine modification xi(t) = axi(t) + b, with a and
b constants, is ignored by our scheme, except for an
unimportant breaking of the symmetry between the A vs
B and C vs D maps. On the other hand, it can completely
spoil the synchronization-frustration process needed for
transmission between Lorenz systems.

For the analog mode, the separation of a signal into
a small-amplitude message and a carrier is not much
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FIG. 3. Unmasking of a digital transmission, using the return
map. In (a) we show the results obtained with the correct
assignment of 0's and 1's to segments 2 and 3 of the attractor.
In (b) we show the results of a typical wrong assignment.
The correct unmasking gives results identical to the original
message, which was the word "1010011101." Each bit is
4 msec long.

more difficult than the extraction of digital messages done
before, at least for low frequencies. We use the same
principle, i.e., the fact that perturbations of any kind on
the carrier signal affect the (quasi) 1D attractors of the
return map. For the analog mode of transmission the
effect of adding the message s(t) to the carrier x~(t) is
to smear the attractor, turning its three segments into
three diffuse stripes. If we superimpose the original
"silent" attractor —which should become apparent in an
actual transmission as a denser line that forms during any
silences the message happens to have to these stripes,
we find that the broadening is almost symmetric, with
equal spreads at both sides.

What we do in order to recover the message from
the return maps is measure the distance between the
present position of the points in the attractor and the
place they should have appeared in the absence of a
message, i.e., in the silent attractor, taking into account
to which side of it the point has moved. This distance
can be reasonably approximated by the closest distance
to the silent attractor. In our case, stripes 1 and 3
of the attractor are almost vertical, and stripe 2 is
approximatedly horizontal. Therefore it is enough to take
the x distance to the silent attractor for stripes 1 and 3, and
the y distance for stripe 2. Once this is done, we need to
assign an amplitude factor (including sign) to segments
2 and 3 (segment 1 is assigned +1.0 by default), and do
some trial and error adjustments —mostly for the signs-
on these two amplitudes in order to get a meaningful
output.

The results of this procedure are quite satisfactory for
frequencies below a cutoff f, = 3000 Hz, which is the
value where the power spectrum for the synchronization
noise peaks. For these low frequencies, the carrier



VOLUME 74 N UMBER 11 PHYS ICAL REVIEEVIEW LETTERS 13 MARcH 1995

has several maxima and m
h

n

.„and for freq
t eres

quencies
orates as

g his

y o ten, the out
oscillations In th

s well abov
e messa ge. For

or, since it sam 1

t e return ma

n conclusion, we have
er to unc i esages transmitt d

y and efficientlsion is easil
e digital m

1 h h
y

een corrupt d,

o the two
&ven the s

branches of the, ss

For the maskin
n er small noise cond

og

y the eak fr
cies up to a cutoff

F
frequency of th

f given rou

r frequencies closes c ose to this cutoff

ac to mask removal d

Since thehe main limitin' g

ny sn the hi
eaves ro er

d
o t e Lorenz oscill

ynot eenoughtom g

aria le is enou h t
ynamics wheree just

ve only one
t er exponent b

positive Lyapu

ho i

nov ex onep nt.

izatson, the a
g as to ensuure fast

sets and will neces

ere is alwa s a
to allow unm

e ects occasson-

h th t ood- ... --. , f h
'""'"'"'""'

. P. wants t h
retical Ph

ot ankthe a
ransmissions

p

e International
ysscs, where this

a Centre for Theo-

ospitality.
is work was sts arte, for their

I i I
)

I i i i i
)

i I i

0. 1

—0.1
I I I I I I I .I I I I II I,! I I I [ I I I I I I I

8 10
ime (msec. )

12

0.2

(b)
6

—0.2
2 4

time (msec, )

"Electronic add
El to i dd

ress: ere
deira ictp. trieste. it

FIG. 4. Unmask
1 The dot d l thot e original

he reconstructed messa

[I] L. M. Pecora and T.LI . . ecora and T.L. Carroll, Phys. Rev.

oes

ng

Isabelle, an

ms
to
e,

Y k 199

nternati onal' C on p h
sn P s o the IEEE

on coustscs, Speech
(g 5, ew York, 1993).

u . . ppenheim, Phys. Rev.e ', ys. Rev. Lett. 71, 65

urali and M. Lak shmanan, Ph
, Int J Bifurcations Cha

nt. J. Bifurcatio, IParliz et I I a ion Ch o 2, 973 I

re ogi, and E. Ott, Phre o i . , ys. Rev. Lett. 70,

. S. Halle et al. , In . . ti

[8] Com
nt. J. Bifurcati

m e use of t
tions Chaos 3 469 (1993 .

aure, (1993).
was cent y that the s

h Th
e s ave may contai

e evolution e ua

zero h

s

}1 hac jeved. See M.

ackard, J. P. C, Farutchfield, J.D. Fa

D /5'
g pringer, Heidelber, 19

I Cho 312

[12] K. C o o(o private commmunication).

1973


