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Superinstantons in Gauge Theories and Troubles with Perturbation Theory
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In gauge theories with continuous groups there exist classical solutions whose energy vanishes in the
thermodynamic limit (in any dimension). The existence of these superinstantons is intimately related
to the fact that even at short distances perturbation theory can fail to produce unique results. This
problem arises only in non-Abelian models and only starting at O(1/p~), and is expected to modify the
universal coefficients of the P function.
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The standard belief in quantum field theory is that in
asymptotically free theories perturbation theory predicts
correctly the short distance behavior of the Green's
functions —and that the harder part is understanding their
infrared behavior. In this Letter we will show via some
simple calculations that this belief is erroneous: In these
theories the ultraviolet (uv) and infrared (ir) effects are
entangled in such a way that, in fact, perturbation theory
fails even at short distances; in particular, the main
assumption underlying the applications of the operator
product expansion (regarding a certain factorization of uv
and ir effects) is invalid in theories such as QCD.

Since our claim runs against the established beliefs,
we would like to provide a clear exposition of the
issues involved. Consequently, at the risk of boring some
readers, we will repeat the general discussion needed
to comprehend what is the trouble [1]. We begin by
reminding the reader why one needs a nonperturbative
definition of a quantum field theory. First, if one claims,
as is usually done, that perturbative QCD (PQCD) is
correct at short distances, what exactly is one claiming'
The temptation is usually to appeal to experiment, but
that is silly since most gauge models have nothing to
do with nature and one could still ask the question. The
only way to make sense of such a claim is to give the
theory a nonperturbative definition and to argue that in
a certain regime perturbation theory produces a good
approximation.

A second reason underlying the need for a nonpertur-
bative definition of a quantum field theory comes from
the fact that, correct or not, perturbation theory provides
us with answers in the form of divergent (nonconvergent)
series. Whereas a unique numerical answer can be asso-
ciated with any convergent series, divergent power series
have no intrinsic meaning, but become meaningful only
if some external (nonperturbative) definition is provided.
Currently popular attempts to "sum up" perturbation the-
ory (PT) are therefore meaningless in the absence of a
nonperturbative definition of the theory.

Therefore both to understand the meaning of the
question "is PQCD correct at short distances?" and to
make sense of the predictions of PQCD, one needs a

nonperturbative definition of QCD. We will adopt the
lattice (LQCD) approach. Some readers may conclude
that our unpleasant conclusions are a consequence of our
use of LQCD. Although that is logically possible, unless
an alternative nonperturbative framework is proposed and
the troubles appearing in LQCD are shown to disappear,
such an excuse cannot be taken seriously.

Following Wilson [2], we consider a regular cubic
lattice in D dimensions and define the partition function
as
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FIG. 1. The lattice in 3D. On the links drawn in heavy lines
U„„k ——1. On the link (m, 2) common to the plaquettes P~, P&,
and P3, U2(m) = 1 for SI BC.

Here U C SU(N) or U E U(1) and A C Z is a hyper-
cube of linear extension I, . To fully specify the problem
we must impose some boundary conditions (BC). We
will choose the following BC: in the hyperplane x~ = 0,
all Upi q: 1 while for all links lying in the hyperplane
xi = L U];„k are free variables; in the remaining direc-
tions A is a hypertorus (periodic BC) with no restriction
on the Polyakov loops in these directions (see Fig. 1).

We chose these BC because they are easily compatible
with the maximally axial gauge. For simplicity we will
discuss the case D = 3, the extension to higher D being
obvious. For our BC the maximally axial gauge amounts
to Ui(x) = 1, x H A, and U2(0, i, j) = I for all (i,j)
Fixing the gauge is necessary if we wish to do PT.
Indeed, as P ~ ~, once the gauge has been fixed and the
BC specified, the system will perform small oscillations
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around one or several (classical) configurations. PT is
simply the saddle point approximation built around these
classical configurations. For L finite PT is correct in
the following sense. Let G(P) be the expectation value
of some gauge invariant observable. Then for P ~ ~
PT produces the correct asymptotic expansion of G(P)
in powers of 1/P. The mathematical meaning of the
statement is that if one truncates the PT formal series at
order k, the error is o(1/P").

Therefore to verify the correctness of a certain PT
prediction one needs not only a computation of the
coefficients entering the expansion of G(P), but also a
bound on the truncation error. That is easy to do for
finite L. Unfortunately, for non-Abelian groups the best
estimates of the truncation error are such that they diverge
as L ~ ~ (for Abelian groups a bound uniform in L
has been shown to exist [3]). Thus it is mathematically
unknown if the PT expansion of a short distance quantity,
such as the plaquette energy, remains valid as L ~ ~.

Since many things which are true are nevertheless
hard to prove, one may wonder if there is any cause
for doubting PT. As emphasized several years ago by
Patrascioiu [4], there are reasons to do so. The saddle
point approximation of an integral amounts to replacing
the integrand by a Gaussian plus corrections. Intuitively
one would guess that such an approximation is good
provided the integrand is sharply peaked and the peak
is sufficiently far from the boundaries of the integration
region. Now in the maximally axial gauge, Patrascioiu
showed that, as L ~, the integrand becomes arbitrarily
Oat; that is, in that gauge, for any D, no matter how
large P is, for L sufficiently large one will encounter
large fluctuations. This statement is much stronger than
Elitzur's theorem [5]: It says that in gauge theories, for
any D, in the maximally axial gauge there is no long-
range order for any finite P. Since PT is an expansion
in small deviations from an ordered state and such a state
does not exist on an infinite lattice, Patrascioiu concluded
that even at short distances PT was highly suspicious.

One may wonder if Patrascioiu's conclusion could
not be dismissed as a gauge artifact, since it is well
known that at least for D ~ 2 the ir divergences which
PT displays in this gauge disappear in other gauges.
Unfortunately, the answer is that this is not a gauge choice
artifact, but a genuine difficulty of gauge theories. To see
that consider first the fact that the asymptotic expansion
of G(P), if it exists, is unique. Now for finite L the
maximally axial gauge is definitely usable. Whatever
answers PT produces in this gauge they must represent the
true asymptotic expansion of G(P) and any other gauge
choice is bound to reproduce them. Since the PT answers
in any other gauge must agree with the PT answers in the
maximally axial gauge for finite L, they must also agree
for L ~ ~. Therefore if PT is not uniformly valid for
L ~, that fact has nothing to do with the use of the
maximally axial gauge.

A direct corroboration of this conclusion comes from
the fact that, while trying to avoid the large-Auctuations
problem of the maximally axial gauge by using the
Landau gauge, Zwanziger [6] discovered a new trouble
which makes PT suspicious: as L ~, the boundary
of the integration region (the "fundamental modular
domain") collides with the position of the peak of the
integrand.

To recap the discussion presented so far, there are good
reasons to suspect that in gauge theories, for any D,
taking the termwise L ~ c limit of the PT coefficients
may actually produce incorrect answers in non-Abelian
models. To go beyond this point we would need an
actual estimate of the truncation error, a task beyond our
present abilities. Following a similar ruse to that we used
recently in the 2D nonlinear rr models [7], we will avoid
that task by appealing to a special property which these
models have and which a correct PT computation should
also exhibit. That property is the absence of symmetry
breaking, which in the 2D cr models is the Mermin-
Wagner theorem; in gauge theories in the maximally axial
gauge it has been proven by Liischer [8] as well as
Simon and Yaffe [9] and also follows from Patrascioiu's
observations [4]. This property implies that, in the
infinite-volume limit, in the maximally axial gauge the
expectation value of the energy of a plaquette located in
the middle of the lattice is the same, whether or not we
fix an additional link variable U2(m) at some link (m, 2) to
some random value. The correctness of this statement is
easy to verify via the convergent strong coupling cluster
expansion [10]. We also performed a Monte Carlo study
and verified numerically for SU(2) at P = 3.0 that the
expectation values of the three plaquettes sharing the link
(m, 2) and shown in Fig. 1 with U2(m) = 1 converge to
the same value, representing the thermodynamic value of
this observable.

Next we would like to inquire whether the PT answers
respect this property of the model. For that purpose we
must compare the limit L ~ in two PT computations:
the first one with what we shall call the Dirichlet BC,
described below Eq. (1), and the second one with what we
shall call superinstanton (SI) BC, namely Dirichlet plus
Uq(m) = 1. For the Dirichlet case the algebra has been
carried out to a large extent by Miiller and Riihl [11],
whose procedure we followed. It yields the following
infinite volume expression for the PT expansion of the
plaquette energy:

(E) = (trU „)= 1 —c /P —cq/P + . . . (2)
For the gauge group U(1) the values of the coefficients are

ci = 1/3, c2 = 1/18, (3)
whereas for SU(2) they are

ci = 1, c2 =023. (4)
We have compared the SU(2) value of the cq obtained by
us in this maximally axial gauge with that obtained by

1925



VOLUME 74, NUMBER 11 PHYSICAL REVIEW LETTERS 13 MARcH 1995

Wohlert, Weisz, and Wetzel [12] in covariant gauges and
they agree.

To obtain the PT coefficients with the SI BC we need a
modified propagator, which vanishes on the link (2, m).
Following a suggestion made to us by Sokal (private
communication), given a certain propagator G(x, y) the
combination

TABLE I. The PT coefficients c~(L) for the energies of the
plaquettes Pl and P& computed with superinstanton BC in the
SU(2) model. For the U(1) model these numbers have to be
divided by 3.

10 20 30

G(x, y) = G(x, y) —G(x, O)G(O, y)/G(0, 0) (5)

will be the propagator with the additional BC that it
vanishes at 0. Therefore out of the previous (Dirichlet)
propagators one can easily construct the SI propagators
and thus compute the PT coefficients for these BC.
We computed the coefficients ci and c2 and found that
limr ci(L) = 1 even with SI BC. Our results of the
computation of c~(L) with SI BC, which are identical
for U(1) and SU(2) up to the trivial factor 3, are given
in Table I; the results for c2(L) with SI BC are given
in Tables II(a) and II(b), for the gauge groups U(1) and

SU(2), respectively. For the U(l) model it can be seen
that both ci(L) and c2(L) are approaching the values given
in Eq. (3); it is easy to describe the values by a fit to a
third-degree polynomial in 1/L, with the constant term
fixed to the values given in Eq. (3). The remarkable
finding is that for the SU(2) model the two plaquettes
P~ and P2 (see Fig. 1) sharing the same frozen link

U2(m) = 1 have PT coefficients c2 converging to different
values —and, in fact, only the limit of the coefficient of P2
agrees with that obtained with Dirichlet BC. The data for
I'], however, are perfectly described by

c2(L) = 0.40633 —1.16026/L —0.498 19/L (6)

so the limJ. c2(L) is clearly different from the number
0.23 obtained with Dirichlet BC. As the discussion
of the vacuum structure below shows, the mechanism
responsible for this effect operates in any dimension
D ~ 2. Therefore, as stated in the introduction, in non-
Abelian models PT fails to reproduce the true properties
of the model, such as the independence of the expectation
value of the energy upon the BC used to reach the
thermodynamic limit. This effect occurs only at O(1/P2)
because only from that order on PT computations involve
loop integrations which mix low and high momenta. Also
the effect does not occur in Abelian theories, which
contain no canceling ir divergences (the action depends
only on gradients and the link measure is fiat). Finally,

TABLE II. The PT coefficients c2(L) for the energies of
the plaquettes PI and P2 computed with superinstanton BC.
(a) U(1) model; the data in the two rows are perfectly
described by 1/18 —0.155 79/L + 0.194 31/L2 —0.396 15/L'
(P&) and 1/18 —0.005972/L + 0.01734/L~ (Pq). (b) SU(2)
model; the data in two rows are perfectly described by
0.406 33 —1.16026/L —0.498 19/L (P ~) and 0.235 22 +
0.124 85/L —5.848 99 /L (P2).

10 20 30

(a)
PI 0.03834 0.04 152 0.04369 0.04648 0.04820 0.05056
P 0.05508 0.05513 0.05518 0.05525 0.05530 0.05538

(b)

let us notice that a similar effect should appear in a
plaquette-plaquette two-point function from which one
could determine the Callan-Symanzik P function. Thus
the PT computation of the latter probably suffers from the
same ambiguities and is not universal, as usually claimed.
We verified that this actually happens in the 2D nonlinear
cr model [7].

A few years ago Gribov [13] suggested that the
long-distance behavior of QCD4 is different from the
usual picture of "infrared slavery, " but that nevertheless
PT describes correctly its short distance behavior. Our
present results show, however, that even at short distances
PT should not be trusted. On the other hand, what we
found here lends support to the scenario presented by
us [14], according to which LQCD4 undergoes a zero
temperature deconfining transition at finite P; such a
transition would lead to a slower variation of a, with
the energy than predicted by PQCD —a prediction which
has since found some experimental support from the LEP
data —and hence to a different P function.

Some readers may wonder if there is a connection
between the troubles with PT we have been pointing
out and the claims [15] that P is a "bad expansion
parameter" and needs to be replaced by an "improved
one." The answer is no: the question we are addressing is
not whether P is a good expansion parameter, but rather
whether conventional PT gives the correct asymptotic
expansion.

Also some readers may wonder if our results are not
contradicted by the constructions of continuum Yang-
Mills theory by Magnen, Rivasseau, and Seneor [16],
which also claim to establish asymptotic freedom. These
constructions work in a small volume, precisely to avoid
the large infrared fluctuations which are responsible for
the effects we are describing in this paper.

Next let us explain the connection between these
troubles of PT and the structure of the vacuum. In the
maximally axial gauge the trouble arises because as I.
grows the system becomes less and less ordered. How

P I 07587 0 805 1 0 8364 0 8762 09004 0933 1

0.9967 0.9968 0.9971 0.9978 0.9981 0.9987
0 2536 0.2852 0 3061 0 3320 0.3472

P2 0.1594 0.1893 0.2050 0.2201 0.2268
0.3669
0.2329
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does that happen? To understand that let us consider
the energy of the classical configuration obtained by
using Dirichlet BC (in the maximally axial gauge) and

fixing U2(L/2, 0, 0) = V for some V = exp(i ~ C) E
SU(2). We cannot write the analytic expression for this
classical configuration, but its general features are easy to
comprehend. To that end let us write

U„(x) = exp i — A~(x)

The BC require A2(0, 0, 0) = 0 and A2 = (L/2, 0, 0) = C.
Consistent with these BC, suppose that

Az (x i, 0, 0) = —C . (8)

The total energy of the (1,2) plaquettes lying between
xi = 0 and xi = L/2 and having xq = 0 = xq is O(C /L),
hence it vanishes as I ~ oo. Of course other plaquettes
will also carry energy, but the total energy of the
configuration will nevertheless vanish as 1/L for any
D (we verified this numerically for D = 3). Indeed a
gauge invariant description of the configuration we are
discussing is this: there is a thin Wilson loop of length L/2
(width I lattice spacing) having the value exp(i 2 C).
The magnetic field is O(~C~/L) and falls off as r o as
one goes transversely away from the loop. Consequently,
even though in this configuration A~ = O(1), its energy
vanishes as I, ~ o .

This is why we called these classical configurations
superinstantons. Since they have arbitrarily low energy
(and a lot of entropy) they will occur copiously in any
gauge theory at weak coupling. In fact, the typical
configuration at weak coupling could be regarded as a
gas or liquid of superinstantons. This picture differs
from the so-called "spaghetti vacuum" [17], which has
higher free energy. In the 2D O(N) o. models certain
percolation results [7] allow one to conclude that if the
typical configuration looks like a gas of superinstantons,
then the model must be massless. In gauge theories such
a connection is missing so far.

Nevertheless, since the superinstantons are practically
degenerate with the trivial vacuum A = 0, and since they
are classical solutions, any saddle point expansion ought
to incorporate them. How one would do that is unclear
at the present time (would a dilute gas treatment be
legitimate?). However, let us point out the following
fact, related to the computation presented in this paper:
One could consider PT around a given superinstanton (the
calculations presented before correspond to PT around

a superinstanton with C = 0). In non-Abelian models,
one would expect the result to depend on C, since in
the maximally axial gauge the ir divergencies are O(L),
whereas the new vertices induced by the superinstanton
field are O(1/L). These considerations show that in non-
Abelian models the coefficient of the correct asymptotic
expansion in the infinite volume limit at O(1/P ) may be
different from what has been accepted as the truth so far.
On the contrary, no such problem arises in the Abelian
model since there are no canceling ir divergencies; hence
PT around any superinstanton will reproduce PT around
the trivial ground state, which makes understandable the
result of [3] that PT produces the correct infinite volume
asymptotic expansion.
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