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A Local View of the Observable Universe

Marco Bruni,'*? Sabino Matarrese,* and Ornella Pantano?*

'Astronomy Unit, School of Mathematical Sciences, Queen Mary & Westfield College, Mile End Road,
E1 4NS London, United Kingdom
’Dipartimento di Astronomia, Universita di Trieste, via Tiepolo 11, 34131 Trieste, Italy
3Scuola Internazionale Superiore di Studi Avanzati, via Beirut 2-4, 34013 Trieste, Italy

“Dipartimento di Fisica “Galileo Galilei,” Universita di Padova, via Marzolo 8, 35131 Padova, Italy
(Received 15 July 1994)

We present results on the nonlinear dynamics of inhomogeneous cosmological models with
irrotational dust and a positive cosmological constant, considering, in particular, a wide class with
vanishing magnetic Weyl tensor. We find that de Sitter is the unique attractor for those patches of
the Universe that are able to expand (cosmic no-hair theorem). For the recollapsing regions we find a
family of (Kasner) attractors, so that generically these regions fall in spindlelike singularities. These
results give substantial support to the idea that the Universe can be very inhomogeneous on ultralarge,
superhorizon scales, with observers living in those (almust) isotropic regions that emerge from an
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inflationary phase.

PACS numbers: 98.80.Hw, 04.40.Nr, 98.80.Cq

Cosmology in the 20th century has been essentially
based on the 2 (+1) parameter (Hy, g, and g¢) standard
Friedman-Robertson-Walker (FRW) models. In 1981 in-
flation came on the scene as a possible solution to the
conundrums of the big-bang FRW scenario [1,2]. How-
ever, despite the fact that these flaws are in one way or
another related to the question FRW models cannot an-
swer, why the observable Universe looks isotropic, and
the inflationary scenario was proposed also to answer this
question, in practice most of the work on inflation has
been done in the framework of isotropic FRW models.
It was indeed soon recognized that during an inflation-
ary phase initially present small perturbations are swept
away, a fact that led to the conjecture that this could be the
signature for a more general property of inflation, going
under the name of cosmic no-hair theorem [3]. Roughly
speaking, inflation should erase previously present inho-
mogeneities, leaving us with a unique possible observable
universe: the isotropic one. Investigations to prove some
restricted version of this general conjecture were done first
in the framework of homogeneous anisotropic models [4],
then also considering inhomogeneous spacetimes [5], but
with practical examples limited to geometries with some
degree of symmetry (e.g., [2,6], and references therein).
The dominant perspective emerging from this analysis is
that in a universe model either inflation occurs everywhere
or there is no inflation at all. Instead, with truly inhomo-
geneous initial conditions, one can expect that there will
always be patches of the Universe that will inflate and
isotropize, while others will not, eventually recollapsing
[7]. In this perspective, we propose that a weak cosmic
no-hair theorem holds.

It is the aim of this Letter [8] to present some results
about the evolution of inhomogeneous universes with
irrotational dust of density p and a positive cosmological
constant A, in particular, studying the local dynamics of
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the wide class of models with a vanishing magnetic part
of the Weyl tensor, H,, = 0.

These spacetimes were first considered in [9], while
their first cosmological implementation was given in [10],
where it was also shown that for the case of dust their time
evolution is given by a system of six first-order ordinary
differential equations for p (matter density), ® (expansion
scalar), o and o, (two independent eigenvalues of the
traceless shear tensor o), and E; and E, (eigenvalues
of the traceless electric Weyl tensor E,,). Thus, the
evolution of each “fluid element” in the H,, = p =0
models is purely local once initial conditions satisfying
the appropriate constraint equations [9,11] are given.
Because of this property, these models were dubbed silent
universes [12,13]. As shown in [12], H,, = 0 is a good
approximation (at least at second order in perturbations of
a FRW background) outside the Hubble horizon, where
also pressure gradients can be neglected, so that these
models may provide a fair picture of the Universe on
ultralarge scales. In other words, the time evolution of
each superhorizon sized “volume element” of the universe
should be well described by the equations of the H,, = 0
models. '

The dynamics of these models with A = 0 has been
presented in detail elsewhere [13]. Here we only point
out that they put the flatness problem [1,2,14] in a rather
unusual perspective: Indeed, independently of its initial
value, () ultimately tends to zero, both for expansion and
collapse, with most of the universe volume dominated
by expanding voids. Defining o+ = %(0‘1 * o03) and
E. = %(El * F,) the dynamics of irrotational dust with
H,, = 0and A > 0O is given by

p=—-0p, (1a)
O =-302—-202~1p+A, (1b)
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oy =02 — 302 - @0, — E, (1c)
o- = —20i0- —300_ — E_, (1d)
E+ =og_E_ — 3E+(T+ -

E_ =30_E, +3E_o4
2

~3p0..  (le)
-~ OE- — 3po_, (If)

where 02 = 302 + o2 is the shear magnitude. Setting

~ = E_ =0 one obtains the dynamics of a set of
universe models generalizing those of Szekeres to the
case of A > 0; some of these models were explicitly
given in [15,16]. Equations (1a) and (1b) are actually
more general than for the case H,, = 0, as they hold
for irrotational dust in general. Also, in this case the
curvature of the 3-surfaces orthogonal to the matter
4-velocity [17] u® is

OR = -202 + 202 + 2p + 2A. 2

Proofs of cosmic no-hair theorems for homogeneous [4]
and inhomogeneous [5] spacetimes were essentially based
on the assumption @R = 0, although inflation has been
found also in some PR > 0 models [2,6,18]. For ®R <
0, it follows that ® = /3A, while ® = A — 302 = 0, s0
that if at z. (an arbitrary initial time) @, > 0 (the model
is initially expanding), then the model expands forever,
with ® squeezed between the lower and upper bound
and ® — /3A exponentially, thus approaching (at least
locally) a de Sitter spacetime in a time scale o = /3/A.
Let us now drop the assumption ¥R = 0 and make
some general (i.e., not restricted to the H,, = 0 case)
remarks. From (1b) and ®, > +/3A the upper bound

O, x) _ A 0.(x)
Noie coth |:\/—3' (r — 1) + arccoth( N )J 3

still holds, as in [4,5], but for ®. < +/3A this becomes

%_;_’A@ = tanh|:\/§ (t — ts) + arctanh(?/%(i)):!.

@

Defining as usual [13,19] by 3¢/¢ = O the local scale
factor €, from (la) one has that p — 0 as long as the
expansion proceeds, and in this case from (1b), (3),
and (4) one gets that ® — +/3A if anisotropy is also
suppressed, i.e., 0 — 0. However, ® is no more bounded
from below in the general case, so that in general one can
also expect recollapse, even after an mﬂatzonary phase.
From (1b) and (2) we see that if A = 3 ; ®2 then 3)R >
0, and also if © > 0 then @R > 0, whlle if A =102
then ® < 0. In particular, this implies that @ < m
is a no-return region: every trajectory entering it will
undergo collapse with ®R/®? — 0*. But if a patch of
the Universe starting with ® < +/3A has to inflate and
isotropize, then in order to get the ® — V3A asymptotic
value it has to superinflate [20], with @ > 0 and®R > 0.
In terms of the usual density parameter () = Q, +
Qy, with the matter and vacuum density parameters
defined as usual, Qy = 3p/0O? and Qy = 3A/07?, it

follows from (2) that @ > 1= ®R >0and®R <0 =
Q <1, and from (1b) that ® >0 = Q > 1, but the
reverse relations do not hold because of the shear.

Now, let us consider the specific case of the dynam-
ics of the H,, = 0 models, described by system (1). For
A = 0 this system has a single stationary point [21], given
by the origin in phase space, p = ® = g+ = g+ = 0,
and corresponding to Minkowski spacetime. For A > 0
this point bifurcates in 10 new points. Of these, three
are static (® = 0), with only one physically meaning-
ful (the other two have p < 0), and represent the Ein-
stein universe, with p = 2A and o+ = E+ = 0. Another
point represents the spatially flat de Sitter spacetime, with

= +/3A (assuming expansion), and p = g+ = E. =
0. Two other points have o~ = E_ = 0, thus are degen-
erate and represent an oblate and a prolate configuration
expanding exponentially with ® = \/A/3 and ® = /A,
respectively. Finally, the two other pairs of stationary
points are physically equivalent replicas of these latter
two. Now, the linearized stability analysis of these sta-
tionary points shows that all of them are saddle points,
thus unstable, except the one representing de Sitter, which
is asymptotically stable if ® > 0; i.e., de Sitter is the
unique attractor for expansion. It then follows that those
patches of the H,, = 0 models that do not recollapse ex-
pand toward a de Sitter phase and isotropize, i.e., o+ — 0
and E+ — 0, with ) — 1 and®R — 0. Therefore, even
in case the portion of the Universe undergoing infla-
tion was initially negligibly small, in a time scale of
order « = /3/A most of the Universe volume will be
isotropized by a phase of de Sitter—type inflation: a pic-
ture which is in the spirit of chaotic inflation [1]. Accord-
ing to the inflationary scenario, this de Sitter period will
be ended by a suitable reheating process, after which a
standard FRW phase will occur with () close to unity.

Another view of the phase space for the H,, models
is achieved using ) and Qy, together with the other
dimensionless variables [22] 2+ = 0+/0® and &. =
E./®2. Obviously these variables diverge for ® = 0, so
that one has to separately consider the ® > 0 and ® < 0
cases. Also, it is convenient to introduce a new “time”
7 = *=31n¢, using the minus (plus) for the ® < 0 (O >
0) case, so that d7/dt > 0 in both cases.

Denoting by a prime the derivative with respect to 7,
by 3?2 = 332 + 32 the magnitude of the dimensionless
shear, and by Qs = Qy — 2Qy the effective gravita-
tional mass density parameter, the evolution equations for
our variables for ® < 0 read

0 = %(2 + 1232 + Qg), 5)
A ‘Q‘V 2

Q = 47(2 + 1232% + Qp), (6a)
, szM )

Q= (1232 - 1 + Q¢), (6b)
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S = ~2—6t(2 — 1237 - 63, — Qg) + %22—
+ &4, (6¢)
s = %(2 — 1232 + 128, — Qg) +&-, (6d)

g, = -83—+(1 — 128> + 9%, — Qg) — S8
1
+ €2+QM9 (66)
g = -83—‘(1 - 1237 - 93, — Qg) — 3% &,

+ %E_QM. (6f)

We see that now the Raychaudhuri equation (5) is
decoupled from the rest of the system (6); i.e., all other
equations do not depend on ®. The advantage we get in
introducing system (6) is that, in addition to the nonstatic
(® # 0) stationary points of system (1), we also have
a set of stationary points representing models for which
the variables in (1) diverge, while those in (6) obviously
have finite constant values. More precisely, system (6)
admits many isolated stationary points, three of which are
unphysical (), = —3), with many degenerate physically
equivalent triplets, and two physically equivalent sets of
points parametrized by 2.. The physically significant
and distinct points are listed in Table I; points L I, L II,
and L IIT have Qy # 0 and are the same nonstatic points
of system (1) described above. Points D I-D VI are
degenerate points with Qy = 0 (i.e., for finite ® they
represent A = 0 models), and the set T III represents

TABLE I. Stationary points of system (6) (only the physically
interesting points are listed). For expansion (@ > 0) the de
Sitter point L I is asymptotically stable, and for collapse (@ <
0) the attractor is given by the points of the Kasner set, i.e.,
the T III family and its conjugate T III. All other points are
saddles. Models marked with M are equivalent to Minkowski.

Point Qy Qy 2. P ey e_ Model
LI 0 1 0 0 0 0 de Sitter
LI 0 3 -1/3 0 1/3 0  prolate
LI o0 9 2/3 0 0 0 oblate

DI 1 0 0 0 0 0 Flat FRW
DII 0 O 0 0 0 0 Milne (M)
DII 0 0 1/6 0 0 0  Szekeres (M)
DIV 0 0 -1/3 0 0 0  Kasner (M)
DV 0 0 1/3 0 2/9 0  Kasner
DVI 0 0 —-1/12 0 1/32 0  Szekeres
TII 0 0 3, 32_(34)%&e+(Z4)®e_(24)¢Kasner

triaxial configurations parametrized by 3, (see the notes
in Table I).

The linearized stability analysis shows again that for
expansion ® > 0 point L I, locally representing a flat de
Sitter universe, is again the unique attractor, while for
collapse, ® < 0, the set T III, together with its conjugate
T III (given by the sign exchange %_ — —3_ and e- —
—g- in the expressions in Table I), is attracting. If
collapse occurs ® — —o and Qy — 0, while 3. and
e+ tend to finite values, and Q, — 0 as well: it can
be shown [13] that the sets T III and T III are locally
equivalent to the Kasner models, thus the outcome of
the stability analysis for system (6) is that collapsing
configurations generically tend to a triaxial Kasner-type
spindle singularity, with matter and A having no effects
in the final stage.

To get a clue of what goes on locally in an inhomo-
geneous universe with an effective cosmological constant
we plot in Fig. 1 three significant inflationary cases of
several numerical integrations of system (1): one finally
recollapsing, and two expanding, one with ®R < 0, and
the other with ®R > 0. The de Sitter phase is asymp-
totically approached with ® /v/3A — 1,R — 0, Q — 1,
and ¢ — —1. We have found that in many cases ® /+/3A
gets below the flat de Sitter line, then approaches it from
below, asymptotically going as (4), with®R — 0. Re-
lated to this, we have observed in our numerical results
that ®R does not change sign during the evolution, al-

o s e R amama 2T T
2F 3 g T ]
E N 3 T VARRAN E

g
= ®
2 ! - ] E F J N ]
e 3 e OT_,———_"‘"““\*"‘“_
1 Loy E 1 N T B
0 2 4 6 0 2 4 6
(A/3)/3(t+to) (A/3)"2(t+to)
3 T - r T -
r 4 ] oL 1
r /T F ]
2 S \ 3 L ]
G [ / AN 1 o ]
T B UG SRR —]
F_-"" ] ]
ol v 1 Pty o] T T B
0 2 4 6 0 2 4 6

(8/3)"3(t+to) (8/3)!*(t+to)

FIG. 1. For three inflationary cases, with one finally recol-
lapsing, we plot four significant dimensionless variables. Top
left: ®/+/3A against \/A/3 (¢ + 1,), where #, and the upper
bounds (thick lines) can be read from (3) and (4). The
©® = /3A line represents flat de Sitter, the upper bound (3)
open de Sitter, and the bound (4) closed de Sitter. In the strip
|®] = V3A®R > 0. Top right: the dynamically normalized
3-curvature scalar ®R/®2. Bottom left: O = Qy + Qy. Bot-
tom right: the deceleration parameter g = —30/0? — 1 (¢ <0
during inflation, ¢ < —1 during superinflation, and ¢ — 2 dur-
ing collapse). Note that for the case with®R > 0, Q diverges
from unity until superinflation occurs, as depicted by g. For
the recollapsing case, before diverging at turnaround (® = 0),
®)R/®?2 and ) are out of scale.



VOLUME 74, NUMBER 11

PHYSICAL REVIEW LETTERS

13 MARCH 1995

though we cannot formulate this as a rule; also, note
that although ®R — o in the collapse, ¥R/®? — 0: the
approach to the singularity is Weyl dominated. Finally,
we observe that in general () does not approach unity
even during the inflationary phase, unless superinflation
occurs.

In this Letter we analyzed H,, = wg, = p = 0 mod-
els with a cosmological constant A > 0 thought as repre-
senting the local value of the vacuum energy density, and
possibly causing the occurrence of an inflationary phase in
certain patches of the Universe with suitable initial condi-
tions. Of course in a realistic scenario such a cosmologi-
cal constant will ultimately decay into radiation, reheating
the Universe to a standard FRW phase. The picture that
emerges is that of a generally inhomogeneous universe,
with large patches of it where, thanks to an early infla-
tionary evolution, the local properties are close to that of a
flat FRW model. In this picture, however, the observable
parameters Hy, {9, and g¢ should be thought of as local
values, not to be interpreted as giving the global prop-
erties of the Universe. Sure enough, this picture needs
to be refined. A first step would be the study of topics
connected with the global properties of these spacetimes,
e.g., the final fate of the collapsing regions and the for-
mation and nature of the singularities [23], and the emer-
gence of horizons enclosing the quasi-isotropic regions.
Ultimately, however, these topics should be studied in the
more realistic setting of a scalar field spacetime with no
symmetries, in order to investigate if and how the pres-
ence of pressure gradients would affect both the collapse
and the expansion processes [24].
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