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Thermally Induced Density Perturbations in the Inflation Era
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The possibility of thermally induced initial density perturbations in inflationary cosmology is
examined. The fluctuation dynamics of a scalar field plus a thermal bath system during slow roll
is described by a Langevin-like equation. Fluctuation-dissipation arguments show that for a wide
parameter range within the standard inflation model, the thermal fluctuations of the scalar field can
dominate its quantum fluctuations. The initial amplitude of density perturbations is found to lie in a
range which is consistent with the recent observations of cosmic temperature fluctuations.

PACS numbers: 98.80.Cq, 05.40.+j

The standard scenario for structure formation in the Uni-
verse is based on infIIationary cosmology. According to
this model, quantum fluctuations of the scalar field during
the expansion era were the perturbing seeds in an initial,
globally smooth universe. From this, large-scale structures
then arose [1]. This model predicts that the initial den-
sity perturbations should be Gaussian, and have a power-
law spectrum with index n —1. Based on this model for
the initial perturbations plus assumptions about dark mat-
ter, the formation of galaxies, clusters of galaxies, and
other objects have been extensively studied [2]. Subse-
quent studies have shown that this model is consistent with
observation, thus not theoretically implausible. Recent de-
tection of temperature anisotropies in cosmic background
radiation (CBR) by the differential microwave radiome-
ter (DMR) on the Cosmic Background Explorer (COBE)
satellite has given the first opportunity to directly probe
the initial density perturbation. These results fit the scal-
ing spectrum given by the inflation model [3]. Thus it is
one source of support for the inflation model in describing
the initial density perturbations.

However, the COBE DMR results do raise questions
about the amplitude of the initial perturbations. Such ques-
tions are not new, only further perpetuated by the COBE
results. Before COBE it was already possible to deter-
mine the amplitude by fitting (or normalizing) the evolved
perturbations with the observed clustering of galaxies on
scales of, say, 8 h ' Mpc, where h is the Hubble constant
in units of l00 km s ' Mpc '. This method suffers from
three uncertainties arising from (1) the evolution of the per-
turbations, (2) the assumptions of dark matter, and (3) the
bias factor. On the other hand, the temperature Auctua-
tions of CBR on scales of superhorizons size at the de-
coupling time, i.e., larger than about 2', directly provide
information about the initial density perturbation, inde-
pendent of the above three factors. The COBE result of
the CBR quadrupole amplitude has already been used to
normalize the amplitude of the cosmic density perturba-
tions. Therefore, it is now a question of observational im-
portance to explain the so found amplitude of the initial
perturb ations.

The origin of the amplitude's magnitude is also relevant
because the "standard" scenario cannot explain it naturally.
It has been known, since developing the inflation model,
that the amplitude of the initial density perturbations given
by quantum fluctuations of the inflationary scalar field
is, at least for the standard model, of order 1, which
is about 10 times larger than the required value [4].
This is sometimes called the fluctuation problem. One
can relax this confIict by sophisticated designs for the
inflationary potential. However, such particle physics
designs counter the naturality philosophy of inflation.
Moreover, in these models the amplitude is completely
determined by unknown parameter(s) of the so designed
potential. This gives almost no constraint to the possible
or reasonable range for the amplitude. As such, it cannot
predict what the initial value of the perturbation amplitude
should be.

This situation motivates a search for other possible
mechanisms, which do not depend on such sophisticated
design. In this paper we show how thermal fluctuations
during inflation may actually play the dominant role in
producing the initial perturbations. It is conventionally
believed that the components of particlelike matter, either
relativistic or nonrelativistic, are totally negligible during
inflation. This is certainly true if we only consider the
energy density, because inflation is by definition the
epoch when the vacuum energy of the scalar field was
the dominant component in the Universe. However, this
does not imply that the initial perturbations must mainly
arise from quantum fluctuation of the scalar field. All
particlelike matter which existed before infIation would
have been dispersed by infIation. Yet, particlelike matter
will not completely vanish if one considers the processes
of the scalar field dissipating into a thermal bath via its
interaction with other fields.

The existence of a thermal component during infIa-
tion may not be exceptional and perhaps even inevitable.
Roughly one can see this as follows. In order to maintain
the @ field close to its minimum at the onset of the in-
Aation phase transition, thermal forces will generically be
an important contributing source. Therefore, at least in the
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where V(@) is the effective potential, and L;„, describes
the interaction of @ with all other fields. The classical
equation of motion for @ in a de Sitter universe is

+ 3HQ + I p@ —e 'V' P + V'(P) = 0. (2)

The friction term I ~ @ phenomenologically describes the
decay of the @ field via the interaction Lagrangian L;„,. In
principle, the friction term I ~ @ may not be reasonable for
describing the energy transfer from @-field particle produc-
tion during far out of equilibrium conditions. However, it
is a proper approximation for describing the energy dissi-
pated by the @ field into a thermalized radiation bath. It
should also be noted that I ~ could be a function of @.
Because of the lack of a detailed model for the decay of
@,we assume that I ~ is a constant independent of @. As
we will show, the thermal fluctuations of @ do not depend
significantly on the details of I"~.

In the standard treatment of the inflation model, one as-
sumes that the inflation era is divided into two regimes:
(1) slow roll and (2) reheating. In the former all interac-
tions between the inflationary scalar field and other fields
are typically neglected. These interactions have been con-
sidered only in the latter, in order to supply the mechanism
to reheat the Universe. This is equivalent to assuming that
the friction term is only important in the reheating regime,
but negligible during the slow-roll (inflation) regime, i.e. ,

3H » I @. In this case, the slow-roll evolution in a spa-
tially homogeneous universe is given by

v'(y)
3H (3)

where H = (87rG/3)p~ —(8m/3)M /mpi, py = P /2+
V(P) is energy of the @ field, mpi = (1/G)'~2 is the
Planck mass, and V(@) —V(0) = M . Equation (3) is
valid when the potential V(@) satisfies the following well-

starting period of the phase transition, there is thermal con-
tact between @ and all other fields with which it interacts.
During the slow roll period of inflation, the kinetic and po-
tential energy of the @ field is fairly constant, so that the
interaction between the @ field and the other fields remains
about the same as at the beginning. As such, there is no
compelling reason to believe that the thermal component
vanishes during inflation.

We will show that, for a wide range of the parameters
characterizing inflation, there can be a thermal component
in the Universe. With an account for such a component,
we find that the density perturbations can originate mainly
from thermal fluctuations. Accepting this mechanism, the
fluctuation problem would be automatically avoided. In
addition, the allowable range for the amplitude would be
consistent with the observed results.

Let us consider the standard model of inflation, given by
a scalar field @ with Lagrangian density

1I. = —a~@ a„@ —v(@) + I.,„, ,

known conditions for the inflationary potential [I],
~

V"((6) ~
&& 247r V (P ) / mp, ,

V' (@)mp, « 48~V (P).
(4)

8' G

3 (py + p. ) (8)

Strictly speaking, when there is a thermal component in
the Universe, one should use a finite-temperature effective
potential to replace the zero-temperature potential V(P).
As we will show below, this replacement will not be
important for our purpose.

Solution (7) implies that independent of the initial
conditions for the thermal component, it will reach a
steady state regime during inflation, i.e., the depletion
of the radiation due to expansion will be balanced by
its production due to friction. From Eqs. (5)—(7), the
constant energy density of the thermal component is found
to be

In the inflation epoch the kinetic energy of the P field,
P~/2, is much less than its vacuum energy p~ —V(@).
Thus we have p, - «p@ if

where n ) 1 is a model dependent arbitrariness. As such,
in terms of the energy density, the considered system
during inflation is still dominated by the vacuum energy
of the @ field, with, in particular, the thermal component
being negligible. Thus other aspects of the inflationary
scenario will remain the same as in the standard model.

Our first observation is that the condition I ~ && 3H is
not necessary for a slow-roll solution. The coupling of
the inflationary scalar field with other fields can coexist
with the roll-down solution. Consider the case when
I @ is comparable to H. This implies that its decay
products will equilibrate quickly to some temperature T, .
For explicitness in the treatment below, let us make the
reasonable assumption that the decay products of the

P field are relativistic matter. The additional equation
needed to describe this relativistic component from the
first law of thermodynamics is

p„+ 4Hp„= r~y',
where p, is the energy density of the thermal component.
With an account for this component, the slow-roll equa-
tion (3) should be replaced by the set

V'(@)
3H+ Ip'

p, = 0,
and
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is then modified to

dP(x, t) 1 BF[@(x,t)]
dt 3H + I p 6(b

T = t =( Wl )'~M 11
where the free energy is given by

However, in terms of the system's temperature, the pres-
ence of a thermal component is not necessarily negligible.
The temperature T, of the thermal component is given by (16)

where W = P2/2V(@) is the ratio of the kinetic and
potential energy of the @ field. From Eqs. (9), (10), and
(11), it is easy to show that the temperature of the thermal
component can be greater than the Hawking temperature,
i.e.,

T, ~H, (12)

(13)

All conditions (4), (10), and (13) can be simultaneously
satisfied if

v'"(y)m, ,
' «v'(y) «m,—,'v(y). (14)

dP 1 dF[$]
dt 3H + I ~ dP

(15)

where F[P] = V(P). Equation (15) is, in fact, an equa-
tion for the rate of change of the order parameter P of a
homogeneous system with free energy Fft/p]. It 'describes
the approach to equilibrium for the system. More gener-
ally, in a study of fluctuations, one should not use the ap-
proximation of a spatially homogeneous universe, so that
the spatial gradient term exp( —2Ht)V2@ in Eq. (2) should
not be ignored. The equation (15) for the rate of change

Since (M/mp~) && 1, this condition can be fulfilled. In
fact, there is a lot of room in the parameter space of
the potential, in which the inflationary expansion of the
Universe will still be dominated by the scalar field,
but the temperature of the system will be determined
by the thermal matter p, . On the other hand, because
W « 1 during the slow-roll regime, Eq. (11) implies that
T„« M. Using AP as a generic inflationary potential,
the leading temperature effect is known to be AT~ [1].
Recalling that to have inflation requires A «(M/mpt)2
means AT2 « M4/mp& —H . Therefore, the influence of
the finite-temperature effective potential is insignificant as
stated earlier.

The quantum mechanical fluctuations of the @ field
during inflation are determined by the Hawking tempera-
ture H. Therefore, one can expect that Eq. (12) is the
condition under which thermal fluctuations will compete
with quantum fIuctuation. We will justify this point in the
following.

To calculate the fluctuations, the P field should be
treated as a stochastic field. Therefore, Eq. (6) should be
interpreted as the ensemble averaged equation of motion.
The essence of Eq. (6) can easily be seen if it is rewritten
as

-H~d x —(e 'V@) + V(@)
2

(17)

Our present purpose is limited to comparing the amplitudes
of thermal and quantum fluctuations. For this, it is enough
only to calculate the P-field fluctuations for the mode of
wavelength equal to the horizon H ' during inflation. As
such, the contribution from the spatial gradient term for
only this mode is important in calculating the correlation
function of the scalar field.

It is known that rate equations such as (17) cannot
correctly describe the approach to equilibrium during
a phase transition without also a noise term [5]. For
instance, Eq. (17) will only cause the order parameter
to evolve towards local minima but not necessarily the
global minimum. To ensure that the system approaches
the global minimum, we must remember that actually
the order parameter dynamics is not purely relaxational,
but may exhibit fluctuations, arising from the microscopic
degrees of freedom. These fluctuations can be modeled
by introducing a noise term tt into Eq. (17) as

d(b

dt
1 6F

3H + I p 6@
(18)

and

(n(t))& = o (19)

(n(t)a(t))& = &~(t —t). (20)

This is the Langevin equation for a system with one
degree of freedom, in similar analogy to, say, a Brownian
particle. A similar type of equation has been examined in
[6]. However, their purpose was to statistically treat the
quantum fluctuations of the scalar field, whereas ours is to
treat external thermal forces.

We had shown in [7] that, during the eras of dissipa-
tions, the dynamics of structure formation in the Universe
should be described by a Kardar-Parisi-Zhang equation
[8], which describes systems governed by nonlinear ef-
fects plus stochastic fluctuations. Equation (18) is a real-
ization of this hypothesis, within the context of scalar field
dynamics in the standard inflationary model. Although it
is in all generality nonlinear, in this paper we will not
study the complete spectrum of the density perturbations,
but only the amplitude of fluctuations with wavelength
-H '. For this we will not concentrate on the nonlinear
effects in Eq. (18).

The stochastic force rt in Eq. (18) can be found from
the fluctuation-dissipation theorem [9]. If the temperature
of the thermal bath is T„ the expectation values of g are
given by
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The notation ( . .)„denotes averaging of g with respect to
a Gaussian distribution. The variance D is given by

1 T.D=2— 21
U 3H + Iy

where U = (47r/3)H 3 is the volume with Hubble radius
H-'.

The Iluctuations 6@ of the @ field can be found from
linearizing Eq. (18). If we only consider the I]uctuations
6@ crossing outside the horizon, i.e. , with wavelength
-H '. The equation for 6@ is

d6@ H + V"(P)
dt 3H + I @

According to condition (4), the term V"(@) on the right
hand side of Eq. (22) can be neglected. From Eq. (22),
one finds for the correlation function of the fluctuations

(~W(t)~4(t')) = D
3H + I@ —(t —t')0 /(30+ I"@)

2H~
t~t,

(23)
so that

(24)

&0&'(4) &(&"o) "(H
)

'
(25)

Because T„(M, Eq. (25) shows that the amplitude of
the initial perturbations, Bp/p, should be in the following

((~4)'), —
4

This is our central result. Notice that it is independent
of I @. This is expected since it is simply the variance
of the @ field when coupled to a thermal bath, as im-

plicit to the fluctuation-dissipation theorem. Neverthe-
less, the importance of a sufficiently large decay term,
as emphasized earlier, is to ensure appropriate dynami-
cal conditions for rapid thermalization of the radiation
bath on the scale of the expansion rate H From Eq. (24).
one can conclude that the thermal fluctuations of the
scalar field will be greater than its quantum fluctuations,
((BP)2)oM —H /27r, when condition (12) holds.

Since the kinematics and dynamics of inAation are the
same here as in the standard model, the initial perturbations
will still have a power-law spectrum with index n —1.
Also the amplitude Bp/p, when it crosses back inside
the horizon, can be calculated by the gauge invariant
amplitude g = 6p~/(p + p) during the time of in]]ation.
For quantum I]uctuations it is known that g is of order l.
This follows simply because for a field in its ground state,
the mean quantum fluctuation of its energy density is of the
same order as its mean kinetic energy density. However,
for thermal fluctuations, the mean kinetic energy density
will be greater than its fluctuation, so one can except that
the quantity g should be much less than l.

The energy fluctuations caused by 8 P are 8p =
6@V'(@), and p + p = p~ + p~ + p„+ p„= P +
(4/3)p„. Therefore from Eqs. (6), (9), (11), and (24), we
have

range:

(26)

Therefore, the amplitude of the initial perturbations is
mainly limited by the ratio M/mpt, i.e., the energy scale
of inflation. If we take M —10'5 GeV, the possible range
for the amplitude 6p/p should be in about the middle of
the range (10 —1) (I ~/H)'I2. This result is consistent
with the observed amplitude 6p/p —10 4.

As an additional outcome of this treatment, Eq. (26)
places an upper limit on the energy scale of inflation
of M ~ mp~(8p/p) 3 —mp~ X 10 3, above which ther-
mally induced fluctuations would be inconsistent with the
observed density perturbations. Therefore, one can also
conclude that, for thermally caused initial perturbations,
inllation should not occur earlier than about mp~/10 .

In addition to the amplitude fluctuation for the scalar
mode, which was treated in this paper, there is also an am-
plitude fiuctuation for the tensor mode [10]. Since this in-
volves weakly interacting gravitons, a thermal mechanism
for inducing these fluctuations seems less likely to the stan-
dard treatment which considers quantum fluctuations.
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