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D=VXH —j', B= —VX EM,

where j' = o-E. Linear response imposes H
B(p,R + ipt), E,

= D(e~ + iet ); nonlinearly, one
usually sets HM = H and EM = E (which neglects
damping altogether). So far, these are statements that can
be found in textbooks [2]. The new information provided
in Ref. [1] is the nonlinear yet dissipative forms of HM

and E, the simplest [3] of which are

HM=H —cVxE, EM=E+ pVxH. (3)

Being of different parity under time reversal than the
other terms of the temporal Maxwell equations, Eqs. (2),
the terms preceded by ct and P (and also o.) are irre-
versible and account for damping and restoration of equi-
librium. For linear constitutive relations, Eqs. (3) reduce
to the linear response expressions with p, R = B/H, hatt

=
D/E, p, t = I/con, and st = I/coP to lowest order either
in the frequency co or the transport coefficients n, P.

Inspection of Eqs. (2) shows that (irrespective of the
form of EM) B is a true hydrodynamic variable, in
the usual sense that the associated frequency ~ ~ 0
for k 0. Conversely, D is nonhydrodynamic and
relaxes (if linear) with the time r = eR/tT. More
precisely, D is an independent hydrodynamic variable
only if co~ && 1, when j' can be neglected and D is
quasiconserved; for co~ && 1, the equilibrium condition
F —= 0 holds instantly, it supersedes the first of Eqs. (2)
and hereby eliminates D as an independent variable.
(For the frequencies in between, D is independent but
nonhydrodynamic. ) The Ohmic relaxation time r varies
greatly; it is a few days for amber and 10 4 s for distilled
water. However, at ambient temperatures, there is a wide
frequency window 1/7, , » co » I/v. for both systems
in which nV X E, rather than j' = o-E, acts as the
primary dissipative term, and both Maxwell equations,
Eqs. (2), are needed. (I am here only laboriously arguing
that the familiar concept of dielectrics is indeed a useful
one. Having assumed its general acceptance, the relevant

Mario Liu Replies: Let me first summarize the pertinent
results of the subject Letter [1], before returning to
discussing the statements in the preceding Comment.
The purpose of the work presented in Ref. [1] is to
describe the dynamic behavior of electromagnetic field in
the hydrodynamic regime, i.e., in the frequency range of
~7-, « 1, 7., being the collision time, after which local
equilibrium is established. To this end, two variables,
D and B, constrained to satisfy V - D = p', V . B = 0
at all times, are added to the usual set of hydrodynamic
variables,

de = pdp+ Tds+v dg+ H dB+ E dD. (1)
Note that the conjugate fields are given as H —= Be/BB
and E =—Be/BD; similar to T —= Be/Bs, they contain only
equilibrium information. The equations of motion for the
two variables are

discussion in Ref. [1], below Eq. (3), was somewhat
brief. ) In good conductors such a copper, r tends to
exceed ~„so these never behave as dielectrics.

Now, since dissipation and nonlinear constitutive rela-
tions are generic phenomena, it seems rather worthwhile
to formulate a Maxwell theory that can account for both
simultaneously, especially in dielectrics. This is what I
have done, and I am puzzled why the authors end their
comment by stating that barring "very special circum-
stances, there is no need to —(implying but not quite
conveying what I did) change the classical Maxwell
equations of continuous media. "

Do Brand and Pleiner have bona fide evidence to sup-
port this stance? They state that D is nonhydrodynamic,
that V X B and V X D have been introduced as macro-
scopic variables, and that these two quantities relax on

microscopic time scales. I disagree. First, in dielectrics,
as discussed, D is hydrodynamic. Second, I have only
introduced D and B as additional variables, cf. Eq. (1).
The energy e is certainly not taken as a function of any
spatial derivative of the two fields. Third, although D
relaxes with ~ and B does not at all, both V X B and
V X D are hydrodynamic and do not relax. The simple
reason is again given by Eqs. (2), taking the curl (or any
spatial derivative) of which clearly renders the associated
frequency hydrodynamic: co 0 for k ~ 0. (V D = p'
is hydrodynamic for exactly the same reason, and charge
conservation is a result, as most know, of the Maxwell
equations. )

A final point: It is correct that n and P are proportional
to the relaxation time of magnetization and polarization,
respectively, cf. Eq. (7) of Ref. [1]. But one must not
conclude that this is indicative of nonhydrodynamic
behavior. All transport coefficients are proportional to
some relaxation times: Take the textbook example of
second viscosity [4].

Mario Liu
Institut fur Theoretische Physik
Universitat Hannover

30167 Hannover, Germany

Received 14 September 1994
PACS numbers: 03.50.De, 05.70.Ln, 41.20.Bt

[1] Mario Liu, Phys. Rev. Lett. 70, 3580 (1993).
[2] L. D. Landau and E. M. Lifshitz, Electrodynamics of

Continuous Media (Pergamon, Oxford, 1984).
[3] Generally, one has to distinguish between the lab and

local rest frame and heed the fact that thermodynamic
forces (such as the temperature gradient or the shear flow)
enter the expressions for H~ and E, cf. also Mario Liu,
Phys. Rev. E 50, 2925 (1994).

[4] L. D. Landau and E.M. Lifshitz, Fluid Mechanics
(Pergamon, Oxford, 1987): Sec. 81, Eq. (81-7).

1884 0031-9007/95/74(10)/1884(1) $06.00 1995 The American Physical Society


