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Magnetic Phase Diagram of the Hubbard Model
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The competition between commensurate and incommensurate spin-density-wave phases in the
infinite-dimensional single-band Hubbard model is examined with quantum Monte Carlo simulation
and strong and weak coupling approximations. Quantum lluctuations modify the weak-coupling phase
diagram by factors of order unity and produce remarkable agreement with the quantum Monte Carlo
data, but strong-coupling theories (that map onto effective Falicov-Kimball models) display pathological
behavior. The single-band model can be used to describe much of the experimental data in Cr and its
dilute alloys with V and Mn.

PACS numbers: 75.30.Kz, 71.27.+a, 75.10.Lp

Spin-density-wave (SDW) order, in which the modula-
tion wave vector of the SDW is incommensurate with the
underlying lattice, is one of the most fascinating ordered
states found in nature. Incommensurate magnetism occurs
in both metallic and insulating phases and on both frus-
trated and unfrustrated lattices. In general, incommensu-
rate magnetic order may be driven either by frustration or
by Fermi surface nesting with a wave vector that lies away
from commensurate wave vectors. It is important to un-
derstand which process plays a more important role and to
understand how many-body effects modify the stability of
incommensurate phases. Here the effect of nesting is ex-
amined on an unfrustrated lattice with strongly correlated
electrons. The resulting phase diagram is then compared
to approximate results in the weak- and strong-coupling
limits (Figs. 1 and 2). Finally, our theoretical results are
compared to those found in Cr and its dilute alloys.

Elemental Cr is a paradigm for an antiferromagnetic
metal [1] with incommensurate SDW order driven by
Fermi-surface nesting. The lattice structure of Cr is an
unfrustrated body-centered-cubic structure which may be
modeled by a Hubbard model [2) near half filling with
moderate electron-electron correlations. Adding electrons
to Cr (by alloying with Mn) rapidly makes the magnetic
order commensurate with the lattice, whereas removing
electrons from the system (by alloying with V) rapidly in-
creases the incommensuration and decreases the magnetic
transition temperature, eventually to zero [3].

Heretofore, incommensurate magnetic order has
mainly been examined within the Hartree-Fock (HF)
(weak-coupling) approximation that neglects quantum
fluctuations. Penn [4] found incommensurate order in the
three-dimensional Hubbard model, and Schulz [5] found
evidence for incommensurate phases on a square lattice.

In this contribution the magnetic phase diagram of
the single-band Hubbard model is investigated in the
limit of infinite dimensions [6]. This limit is useful,
because it has been shown to contain most of the physics
expected of three-dimensional Hubbard models, and the
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FIG. 1. Phase diagram of the Hubbard model in the (a) weak-
coupling regime (U/t' = 1, 1.5, 2, 3) and (b) strong-coupling
regime (U/t" = 3, 4, 5, 7). The solid (open) dots denote the
transition temperature to a commensurate (incommensurate)
SDW phase as determined by a QMC calculation. The solid
(dotted) lines denote the transition temperature to a commen-
surate (incommensurate) SDW phase using the modified Stoner
criterion in (a) and using Li and d'Ambrumenil's approximation
in (b). The dashed lines are a fit of the QMC data by the form
T, /t" = a(p —p, )'. The exponent c increases with increasing
U.

many-body effects can be treated numerically with the
quantum Monte Carlo (QMC) techniques of Hirsch and
Fye [7]. This allows us to demonstrate the existence
of incommensurate order at finite temperatures in a
model that only includes Fermi-surface nesting effects and
electron-electron correlations.

The Hubbard model [2] is described by the following
Hamiltonian:

tH — ~ [Cia Cj o + Cj ~chirr]2+d (, )

+ Ug(n, l
—~)(n;1 —

~)
—p, P n;„,
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FIG. 2. Phase diagram for the Hubbard model as a func-
tion of electron concentration and U. The thin (thick) solid
lines denote the commensurate-incommensurate phase bound-
ary for the Stoner criterion (modified Stoner criterion); the
thin (thick) dashed lines are the corresponding results for the
incommensurate-paramagnetic phase boundary. The dotted line
is the strong-coupling approximation for the commensurate-
paramagnetic phase boundary. The solid (open) dots denote
the QMC solutions that display commensurate (incommensu-
rate) SDW order.
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The bare susceptibility only depends on the scalar param-

(4)

where c; (c;) is a creation (destruction) operator for
an electron at site i with spin o.. The hopping matrix
elements connect nearest neighbors on a hypercubic
lattice in d dimensions; its magnitude is written as
t = r*/2~d [to have a well-defined limit in infinite
dimensions (d ~ ~)]. All energies are expressed in units
of the rescaled hopping matrix element t*. The Coulomb
repulsion is represented by U and the chemical potential
by p, .

In the limit of infinite dimensions the local approxima-
tion becomes exact [6]. The electronic Green's function
G(i~„) —= G„ is represented by an integral over the non-
interacting density of states p(y) = exp( —y2)/~7r:

p(y)
&run p ~n

—= F (ice„+ P, —$„), (2)
with X„—= X(ice, ) the electronic self-energy. The mag-
netic susceptibility satisfies Dyson's equation,

X-(q) = X'(q)~- —T y X'(q)1-X-(q). (3)
r

with I „—= I (ice, i cu„) the local irreducible vertex func-
tion for SDW order. The bare particle-hole susceptibility
Xo (q) is defined by

X (q) =— TQG (k)G (k + q)—
k

1 1

~~ 41 —X2

eter X(q) —= p, , cosq;/d, which defines an equivalence
class of wave vectors in the infinite-dimensional Brillouin
zone [8]. X(q) can be parametrized by the line that
extends along the Brillouin zone diagonal from the
zone center (X = 1) to the zone corner (X = —1). The
self-energy and irreducible vertex function are extracted
from the self-consistent QMC simulations as described
previously [9].

It is important to qualify the region of validity of
different approximation techniques by comparing them
with the numerically exact QMC results (the errors of the
QMC calculation are well understood and controllable).

In the weak-coupling limit a renormalized Hartree-Fock
approach [10] is employed. The Ne:el temperature is
determined by the Stoner criterion,

1—= X„"~(X,T) —= T gX„"(X), (5)
n

where the bare particle-hole susceptibility X„"(X)is calcu-
lated with noninteracting Green's functions G„" [X„=0
in Eq. (2)]. This HF transition temperature is reduced by
factors of order 3 due to quantum fiuctuations [10], even
in the limit U/t" ~ 0. Quantum fiuctuations modify the
Stoner criterion (by subtracting the local particle-particle
susceptibility) to [11]

o—= X„i,(X, T) —X (X = 0, T)

= X'(X, T) —T P IG„"I', (6)

in the limit U/r ~ 0. These fiuctuations initially reduce
T, by the factor exp[ —Xo„(O, T,.)/p(p)] in the weak-
coupling limit [10,11].

In the strong-coupling limit the Hubbard model can
be mapped onto a Falicov-Kimball model [12,13]. This
mapping is exact for the self-energy, but not for the
irreducible vertex functions in the limit U/t ~. As
a result, the strong-coupling theories display pathological
behaviors. More explicitly, these approximations assume
that the down-spin particles form a static background
when the up-spin particles move and vice versa; this
system is then described by Falicov-Kimball models [14]
for both the spin-up and spin-down electrons that are self-
consistently coupled together. Two different coupling
schemes have been proposed so far [12,13]. Janis and
Vollhardt's approximation [12] underestimates the SDW
susceptibility at half filling which strongly suppresses T,.
and does not reproduce the Heisenberg limit of T,. =
r*2/2U Li and d'Ambr. umenil's approximation [13] is
correct for large U at half filling, but has the pathological
behavior of predicting ferromagnetism away from half
filling because of segregation in the effective Falicov-
Kimball model. This latter pathology occurs because the
zero temperature occupation number of the static particles
is 0, 0.5, or 1, and segregation occurs whenever the static
particle concentration is 0.5 and does not equal the mobile
particle concentration [15]. We deal with this pathology,
by only considering ordered states with X ( 0.
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FIG. 3. The magnetic susceptibility for a ~q~all X~ ~ at various
h U = 4 and p, = 0.825. The susceptibilitytern eratures when U = an p,, =

dis p k X = —0.90. As shown in the inset,
= 0 0148. t*) was inferred from

dis la s a peak at
the transition temperature (T, =
extrapolation of the peak inverse susceptibility.
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To determine the magnetic transition temperatures, we
calculated the magnetic susceptibility for all X(q) in the
Brillouin zone.ll . As shown in Fig. 3, the susceptibility a-
ways isp ayed 1 d a maximum at a distinct value of X. T e

inte ola-transition temperature was then inferred from interpo a-
tion (or extrapolation) of the peak inverse suscepti i ity,
as shown in the inset to Fig. 3. At half filling [9] t e
Hubbard model in infinite dimensions has a transition to
a commensurate antiferromagnetic state (X = —1) at the

critical fill-half filling, the Neel temperature drops until a critica

incommensurate. This is shown in Figs. 1(a) and 1 b
for the weak-coupling and strong-coupling results, respec-
tively. As the system is doped further away from half
filling, the wave vector of the ordered phase changes con-
tinuous y wi1 th the electron concentration until T,, rops to
zero at the incommensurate-paramagnetic phase oun-
ary. The shape of the magnetic phase boundary changes
continuously from a square-root-like dependence (as a
function of doping) at weak coupling to an almost linear
dependence at strong coupling, with the same crossover
region ~(U = 3t*) as found for T~ at half filling.

Phase diagrams in the weak-coupling regime ( /t
3) have been obtained from both QMC simulations an
from the theory of Eq. (6). They are plotted in Fig. 1(a)
for four values of U/t* (U/t* = 1, 1.5, 2, 3). Let. X,„
denote the largest value of the scalar parame er
which incommensurate order is found for each value of
U. In the QMC simulations, we find that both X~»
increases, an t ad h t the ratio of the transition temperature
at the commensurate-incommensurate phase boundary TI

h N l temperature at half filling T~ decreases, as the
cou ling strength increases. However, when the mo i ecoup ing s reng

find that the transitionStoner criterion is used, we find t a e
temperature curves scale with the coupling strength and

im lies thatmaintain the same approximate shape. This imp ie
X „will increase, while the ratio TI /T& remains constant,
TI/T~ = 0.57.

QMC results in the strong-coupling regime UU t" ~3,
along wit i anh L d d'Ambrumenil's approximation for T,.
are plotted in Fig. 1(b) for U/t' = 3, 4, 5, 7. The approxi-
mate resu ts are genelt enerated with the restriction that only or-
dered states with X ~ 0 are considered (which suppresses

this assumption, the strong-coupling theory predicts no
incommensurate order (near X =—= —1 and the transition
temperature curves also maintain t e psame sha e as the
coupiing streng c1 '

th hanges. Accurate simulations at very
large values of U are not possible with the QMC. Thus,
we are unable to determine whether X „continues to in-

crease in the strong-coupling regime, nor are we able to
determine what happens to TI/T~.

Both weak- and strong-coupling approximations are
unable to reproduce the qualitative change in shape of the
finite-temperature phase diagrams as a function of U.

Th " h se diagram" which indicates thee p ase
cornmmensurate-incommensurate p ase boundar (oc-

neticcurnng at T = T ) and the incommensurate-paramagnet
sentedphase boundary (occurring at T = 0) is presente

in Fig. 2. The thin (thick) solid lines denote the
commensurate-incommensurate bou yndar for the Stoner
modified Stoner) criterion; the thin (thick) dashed lines
lot the corresponding paramagnetic phase boundary.

The dotted line is the commensurate-paramagnetic phase
boundary in the strong-coupling theory, anand the dots are
the QMC results. The quantum Iluctuations strongly
renormalize the HF phase boundary to produce good
agreement with the QMC [the critical value of U is
shifted by 1/U = 1/UHF —g,",„(O, T,)]. The value o
X,„=—0.7 occurs at U = ~ when the modified Stoner
criterion is used, whereas X „increases to the ferromag-
netic point (X = 1) in the Stoner theory, i.e., quantum

fluctuations completely suppress ferromagnetism in this
approximation.

Finally, we comment on the possibility of phase sepa-
ration. Recent analysis of the U 0 limit at T = 0 as
shown that phase separation between the commensurate
SDW and the paramagnetic phase precludes the appear-
ance of incommensurate order [16]. This phase separa-
tion disappears when U is larger than 0.8t"'. We cannot
directly rule out the possibility of phase separation modi-
fying the results found here, but we have checked t at
the uniform compressibility is positive for all of the QM
results (a necessary but not sufficient condition against
phase separation).

Finall, it is of interest to compare our results with
what is known about magnetism in elemental Cr. Elec-
tronic band structure calculations , 1 show that the
d-electron concentration for Cr is . atomatom which is
close to a half-filled band. Doping with Mn adds an
electron to the d bands, and doping with V removes
an e ectron.1 . The commensurate-incommensurate phase
boundary lies at a doping of 0.3 lo Mn and the para-
magnetic phase boundary at a doping o . oin of 3.5% V [1,3].
Since the density of states for Cr is peaked near the
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band edges, rather than the band center, it is difficult to
map directly onto the Gaussian density of states (of the
single-band model in infinite dimensions). Instead, we
compare the ratio of the incommensurate ordering wave
vector to the commensurate wave vector in order to es-
timate the magnitude of the Coulomb interaction. The
smallest value for the ratio of the incommensurate wave
vector to the commensurate wave vector is 0.92 for
Cr [1,3], implying X,„=cos(0.92~) = —0.97 for the
single-band model. The approximate value of U is then
estimated to be U = 1.9t' (U = 1.5t*) for the weak-
coupling theory (QMC). (We also found that the in-
commensurate wave vector changes very rapidly with
doping near the commensurate-incommensurate phase
boundary which is reminiscent of the first-order jump
in the wave vector that is seen in Cr.) The ratio of TI
(325 K) to T~ (700 K) is 0.46 which is smaller than the
weak-coupling value of 0.57 and is consistent with the as-
signment of a small value to U/t* The Neel. tempera-
ture at half filling is approximately 0.096t* (0.086t*) in
the weak-coupling theory (QMC) which yields an effec-
tive bandwidth W —= 4r* = 2.4 eV (2.7 eV) for the single-
band model ~ This is a reasonable number since Cr has
a bandwidth of 6.8 eV, and the pileup of the density of
states at the band edges [1] implies that the bandwidth
for an effective single-band model must be larger than the
naive approximation of one-fifth of the total bandwidth.

In conclusion, we have shown that incommensurate
SDW order exists in the infinite-dimensional Hubbard
model as one dopes away from half filling. A simple
modification (due to quantum Iluctuations) of the usual
Stoner criterion produces good agreement with the weak-
coupling QMC results and is easy to implement in arbi-
trary dimensions (the q-dependent spin susceptibility is
reduced by the local particle-particle susceptibility be-
fore applying the Stoner criterion). Since these quantum
fluctuations produce large renormalizations of the mag-
netic phase boundaries, it is worthwhile to repeat previous
Hartree-Fock calculations [4,5], and employ the modified
Stoner criterion. We have also found that strong-coupling
theories (which map onto effective Falicov-Kimball mod-
els) display pathological behavior in the magnetic tran-
sition temperature, because the (approximate) irreducible
vertex functions do not reproduce the atomic limit when
U/t' ~ ~. Finally, we have shown that much of the be-
havior found in Cr and dilute Cr alloys can be described

by an effective single-band Hubbard model that does
not include any of the microscopic detai1s of the band
structure.
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