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Solitons with Internal Degrees of Freedom in 1D Heisenberg Antiferromagnets
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The dynamics and statistical mechanics of two-parametric solitons (dyons) in a weakly nonuniaxial

Heisenberg antiferromagnetic chain are considered. The dyon contribution to the dynamic. structure

factor is calculated, and resonance frequencies for the recently studied 1D antiferromagnet CsMnI3 are
estimated.

PACS numbers: 75.50.Ee, 75.60.—d

It is well known that solitons play an important role in
the physics of one-dimensional (1D) systems, being a sepa-
rate type of elementary excitation [1,2]. Magnetic chains
in solids are a good realization of 1D systems, and soliton
signatures were reliably observed in static and dynamic
characteristics of various 1D magnets with both ferro- and
antiferromagnetic coupling [3]. Topologically nontrivial
soliton excitations, apart from being movable defects in

magnetic order, can possess additional internal degrees of
freedom, such as magnon modes localized at a kink [4],
or precession of spins inside a kink [5,6]; such solitons
with extra degrees of freedom are usually called dyons [7].
In 1D antiferromagnets (AFM's) they are responsible for
subtle quantum effects distinguishing between spin chains
with integer and half-integer spin [6,7]. Characteristic
frequencies of the internal motion can be detected in
principle by electron spin resonance (ESR) or inelastic
neutron scattering (INS). In three dimensions, magnon
modes localized at the domain walls in AFM's were
experimentally observed in thulium orthoferrite [8]. In
one dimension, dyon signatures were observed in the
Ising-type quasi-1D AFM CsCoC13 in ESR and INS ex-
periments as the so-called "soliton magnetic resonance"
[9]. For Heisenberg magnets, to the knowledge of the au-

thors, there are no observations of effects which could be
attributed to dyons.

This Letter is devoted to internal kink modes in 1D
(classical) Heisenberg antiferromagnets. We consider a
continuum model of an easy-axis antiferromagnetic chain
with weak biaxial (orthorhombic) anisotropy, and show
that in the case of the AFM even in a classical model
with sufficiently large spin value (e.g. , S = 5/2), internal
kink modes have quantum features absent in ferromagnets
(FM's). A kink in an AFM acts as a nonlinear periodic
potential for the dynamics of localized modes, with
strong quantum tunneling between wells. Taking that
into account, we construct a dyon phenomenology for
the statistical mechanics of a soliton gas, in the spirit of
Ref. [2]. Further, we calculate the dyon contribution to
the dynamic structure factor (DSF), and apply the results
to predict resonance frequencies for the recently studied
quasi-1D AFM compound CsMnI3 [10,11].

The model. —Consider the classical model of a Heisen-
berg easy-axis AFM with rhombic anisotropy which can
be described by the following Hamiltonian:

S'+1 + D~(S') + D2(Si )') (1)
l

Here 1 ) 0 is the exchange constant, Dl 2 are anisotropy
constants, and spins 5; are treated as classical vectors of
length 5, situated at the sites of a one-dimensional lattice
with lattice constant a. We assume that D[ ) D2 ) 0,
then z is the easy axis, and (zy) is the easiest plane. It
is convenient to introduce the rhombicity parameter p =
(D&/D2) —1; in purely uniaxial AFM's p = 0, and p »
1 corresponds to the almost easy-plane situation. This
model is sufficiently simple from the theoretical point of
view and, besides that, can describe several real quasi-
1D magnets. For example, CsMnI3 is well described
by the Hamiltonian (1) with p = 0 [11], and for CMC
(CsMnC13 2HqO) p = 3 [12].

Dynamics. —A low-energy, continuum model of AFM's
can be derived in the usual way [13]. We define normal-
ized vectors of magnetization m„and vectors of antifer-
romagnetism l„as linear combinations of spins in pairs of
neighboring lattice sites: m, = (S2„+ S2»+~)/2S, l, =
(S2„—Sz„+&)/2S. Vectors m and l are defined on a lat-
tice with the spacing 2a and are subjected to the constraints
m - l = 0, l + m = 1. This procedure of breaking the
original lattice into dimers is necessary to keep the total
number of degrees of freedom unchanged. For low tem-
peratures and weak magnetic fields the magnetization in

AFM is small, )m( (( (l~. Taking that into account, one
can pass to the continuum limit and introduce the Lagran-
gian via I = f(dx/a)S Itm(l X ill/Bt) —H (see Ref. [14];
the integrand in the first term in L is nothing but Berry s

phase [15]for a spin dimer). Note that H contains a parity-
breaking term proportional to mal which is a consequence
of the translational noninvariance of breaking the lattice
into dimers when passing to the continuum limit.

After integrating out the degrees of freedom corre-
sponding to m, one obtains an effective Lagrangian de-
pending on l only, where I now has to be considered as
a unit vector 1 = 1. The effective Lagrangian density X
can be written in the form of the anisotropic o. model with
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a topological term [13]:

= (1/2)JS a(c (Bl/Bt) —(Vi) —xoi l —
x()~ l )

+ (I/2)RSl(al/at x Vl), (2)

where c = 2JSa/It is the phase velocity of spin waves
and xo, = a(J/2D, )'t, j = 1, 2 are characteristic length
scales. It is assumed that the anisotropy is high enough
to suppress quantum fluctuations, and the ground state is
ordered. The magnetization I can be expressed via l and
its derivatives:

I = (6/4JS)(l X Rl/Bt) —(I/2)aVl . (3)

This formula can be obtained either directly by the
variation of the full Lagrangian L[m, l) in m or from (2)
by considering an infinitesimal rotation 60 in l space and
using the fact that m ~ 6 X /60 (see Ref. [16] for details).

The model (2) has elementary excitations of two
types, kinks and magnons. There are two branches of
magnons, with I oscillating in the (zx) and (zy) planes,
respectively. For both branches the dispersion law has
Lorentz-invariant form cv, (k) = (coo, + c k )'t, where
coo, = c/xo, are the activation frequencies, and k is the
magnon wave vector.

For analyzing soliton solutions it is convenient to
introduce angular variables instead of the unit vector, l +
i l,,

= sinOe'~, l, = cosO. At p = const the equations
of motion reduce to the sine-Gordon equation for the
variable 20. Respectively, there are two simplest static
soliton solutions, describing ~ kinks of the vector l,

cos00 = o. tanh(x/xo, ),

where po = 0, vr for j = 1 and po = ~w/2 for j = 2;
o- = ~1 is the topological charge. Rest energies of the
zx and zy kinks are simply related to the corresponding
magnon gaps: Fp, = Sheep, . It is worthwhile to remark
that in FM's Fo/htvo ~ (J/D)'t, and kinks are "heavy"
particles, in contrast to AFM's, where for realistic S
values kinks are rather "light. " For p ) 0 the zx kink
is energetically disadvantageous and unstable.

For the purely uniaxial case (p = 0) all directions in
the (xy) plane are equivalent, and one can construct a dyon
solution, where l precesses around the z axis with the fre-
quency or [5,6]:

cosO = o- tanhi(x/xo) (1 —cv'/coo)'t'), cp = tot. (5)

Here xp: xp2 and cup = ~p2. Because of the Lorentz
invariance, kinks moving with the velocity v can eas-
ily be obtained from the v = 0 solutions by the substitu-
tion (x, t) ~ (P, r), (g, r) = (1 —v~/c2) 't2(x —vt, t-
vx/c ). The precession frequency tv lies in the inter-
val —cup ( co ( ~p and is related to the additional inte-
gral of motion, the z component of the total spin S, =
(itS/a) jdx m„which is simply a conserved momentum

canonically conjugate to the p.

S, /6 = o.S + Stv/(coo —tv )' (6)

the energy of a moving dyon with momentum P is
&„(P) = (&„+ c P )'t It sho.uld be remarked that in
the pioneering work of Haldane [6] the contribution to m

leading to the first term in (6) did not arise, because in
that paper Haldane used a different procedure of passing
to the continuum limit which did not conserve the total
number of degrees of freedom. Thus he arrived at the
conclusion that n must be half integer for half-integer S,
and that the minimum of energy in that case is reached at
n = 1/2, i.e., in a state with nonzero precession frequency

In our approach n is an integer irrespective of S, and
the minimum of energy is always reached at n = 0.

Real AFM chains are not purely uniaxial. A small in-
plane anisotropy is always present, destroying the integral
of motion S, . Let us consider how the transition from
dyons (5) to simple sine-Gordon zy kinks (4) takes place
when p increases. For p 4 0 the simplest linear analy-
sis of excited states against a background of a zy kink re-
veals the existence of a localized magnon mode with the
eigenfrequency tv&„, = cvo~pandthe eigenfunction corre-
sponding to uniform (independent of s) oscillations of tp

around pp. However, in AFM's the range of applicabil-
ity of the linear approximation is very restricted because
of strong quantum fluctuations. The estimation of the
amplitude of zero-point Iiuctuations yields ((p —po) )—
1/Sp 't2, so that for realistic values of S iluctuations are not
small even at p —1. The linear approximation is valid
only for pS » 1. Zero-point fluctuations drive the os-
cillator to the nonlinear regime, and therefore localized
modes in 1D AFM's should be treated quantum mechan-
ically, with the account taken of nonlinearity. At certain
sufficiently small p —I/S~, oscillations of p completely
delocalize, transforming into rotations. Note that it is very
different from the situation in 1D FM's, where the ampli-
tude of zero-point Iluctuations (hcp ) ~ (D/J)'~2 is rather
small and localized modes can be treated classically.

To analyze the transition from the usual kinks to dyons,
we note that in both limiting cases p » 1 and p 0 the
variable p does not depend on x; p = p(t). Thus if we
are interested in the dynamics of the localized mode only

The first term in S, comes from the V'l contribution to I
and is topologically invariant. Semiclassical quantization
of the internal motion requires that S, is quantized in inte-
ger steps of h, i.e. , S, = vh [6,17]. From the properties
under time reversal [6] it follows that the quantum number
v must be integer or half integer for integer or half-integer
S, respectively. Thus we obtain that S, —o Sh = nh,
where n is always an integer. For the energy of the dyon
solution (5) one can write an expression coinciding with
that obtained by Haldane [6]:

F„= Italo(S + n )'t;
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X, = (T/2') dk 6,'(k) In(1 —e "'~"~i ) . (12)
j=1,2

Here 6, (k) is the asymptotic phase shift acquired by a
magnon of the jth branch of the continuous spectrum

(which is responsible for the transition), we can look for a
soliton solution of the form

cosO = o-tanh[x/xo(p, )], cp
= p, (t), (8)

where xo(p, ) = xo/(1 + p sin p, )'i~, and q&, is treated as
a slow variable, provided that the frequency of the lo-
calized mode is small compared to cup. In our simple
Lorentz-invariant model, obtaining moving solutions is
trivial, and translational and internal motion are decou-
pled. The presence of an external magnetic field violates
the Lorentz invariance and couples internal and transla-
tional degrees of freedom, leading to interesting quantum
effects which will be reported elsewhere.

Proceeding to a canonical quantization, we obtain the
equation of the wave functions 'P„and energy levels E,
of the internal mode,

(Fi'coo—/2Eo)a'/a p,' + U(q, ))'Ij'„= E„'IJ„, (9)

where U(p, ) = Eo(1 + 2p sin p, ) is a periodic potential
and Ep =— Ep2 is the energy of a static zy kink. This is the
well-known Mathieu equation [18], and its solutions de-
pend on the parameter pS2/4. At pS2 » 4 the beginning
of the spectrum corresponds to a harmonic oscillator, and
higher energy levels transform to those of a free rotator:

En ——R~oS + he@~„(n + 1/2), E„&& pEo/2, (10a)

Et i = hcuoS + ~ (h~o/2S), E„&& pEo/2. (10b)

If pS «4, which is a more realistic regime for p «
1, then the motion of y is never constrained, and the
energy levels from the very beginning are described by
(10b), to the first order in p. Recall that (10b) can be
obtained from Eq. (7) at n « S. The range of validity
of (9) is the same, n « S, because the frequency of the
localized mode (E„+~ —E„)/h should be small compared
to cop. Thus at pS «4 quantum zero-point fluctuations
become rotations, and the dynamics is essentially that of
a dyon in a purely uniaxial case. One can expect this
correspondence to remain the same at a higher excitation
level (higher n), so that for p S « 4 the expression (7) will
be approximately correct for arbitrary n. For those reasons
we expect that dyons can exist even in nonuniaxial AFM's,
provided that the magnitude of rhombicity is not too large.

Dyon thermodynamics. —At low temperatures T « Ep
the statistical mechanics of a dyon gas can be considered
phenomenologically, following the approach of Ref. [2].
The distribution function of dyons can be represented in
the form

w(P, n) = (27rh) 'L exp( —[E„(P) + X,]/T), (11)
where L is the chain length, and X, is the change in the
free energy of the magnon gas due to the presence of a
kink, which is attributed to the kink self-energy

nt, = (4Eo/Txo)e (14)

which coincides with the exact result for the uniax-
ial model, obtained by Nakamura and Sasada [19] by
the transfer operator technique, thus justifying our phe-
nomenological approach to the statistical mechanics of
the dyon gas. In the intermediate temperature range
1/S (& T/hcoo &( 1 we have

n, = (TS /Eoxo)e (15)

and for very low temperatures T « hcoo/S one again
obtains the expression (13). We would like to note
that formulas (13) and (15) cannot be obtained within
the framework of a classical transfer-operator technique,
because they, in fact, take into account quantum effects of
mode "freezing. "

Response function. s —Consider the dyo. n contribution to
the dynamic structure factor (DSF) S ~(Q, co), which is es-
sentially the Fourier transform of the two-spin correlation
function (S (z, t)Si (z', 0)). Usual sine-Gordon kinks are

after its interaction with a kink, and the prime indicates
differentiation with respect to k. Generally, 6, (k) depends
also on P and n, but for low temperatures T « Ep
the main contribution to the thermodynamics comes
from dyons with P « Eo/c and n ~ S, and this weak
dependence may be neglected. At n = 0 the expression
for &, (k) is easily found from the exact magnon wave
functions against the background of a sine-Gordon kink
(4), 6~ 2(k) = —2 arctankxo [2].

The total soliton density n, = L ' P„ f dP w(P) deter-
mines the correlation length s,„, = I/2n, and can be eas-
ily calculated for various regimes, depending on the values
of T/hcoo and p. In the classical linear case p » 4/S2
the dyon energy E„(P) is given by (10a), and for the high-
temperature interval 1 « T/hcuo « S we obtain the usual
sine-Gordon result [2] n, = xo (2Eo/7rT)'i e ~"ir, often
cited in literature without any comments concerning its
applicability conditions. In the low-temperature region
T ~ hcuo correction to the kink self-energy X, is expo-
nentially small, so that for n, we have the expression

n, = Sx, '(T/2mEo)'i'e '"i', (13)

similar to that obtained by Krumhansl and Schrieffer
[1] completely neglecting kink-magnon interaction. This
formula naturally appears in the low-temperature limit
when magnon degrees of freedom are frozen. It should
be pointed out that for AFM's, in contrast to FM's, the
temperatures T ~ Fl cop are still high enough for the soliton
density not to be vanishingly small, because of the relative
smallness of the ratio Eo/hero.

In the opposite nonlinear quantum regime p « 4/S~
the dyon energy is approximately described by the expres-
sion (7), and at T « hruoS the free rotator formula (10b)
can be used. Furthermore, if T » hcuo/S, this rotator can
be considered classically. In the high-temperature region
T » heep we obtain for the soliton density
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known to lead to the central peak (CP) in the DSF, around
to = 0 [3]. In the case of AFM's, the main contribution
to the DSF comes from the correlator of the antiferromag-
netism vector l and is concentrated around the magnetic
Bragg wave vector Qz = ~/a (the contribution of m is
concentrated near Q = 0 and is D/J times smaller in
intensity).

The longitudinal (with respect to the easy axis) com-
ponent 5" remains almost unaffected by the internal kink
dynamics, and we will be interested only in transverse
components. If pS~ && 4, the localized mode is "hard"
and contributes only to the high-frequency region, so one
can neglect it when describing the CP. Then 5 = 0,
and for S» we obtain the usual Gaussian-shaped CP [3],
S Y(Q~ + q, co) = fG(q, co), where

(27r)' Lng z to
fo(q. ~) = ' IFi(q)l'exp. —

tjf VT 2g VT

The half-width of such a CP is I = q vT. Here vT =
c(T/Ep)'t2 is the rms velocity of a kink, and F&(q) =
~ cosh '(~qxp/2) is the transverse form factor describing
the kink shape.

In the "quantum" case pS2 && 4 the system is almost
axially symmetrical, and S- = S» = S . The resulting
expression for S can be written in the form

(Qa + q, to) = (2Z„) ' g e " 'tfa(q, to —0,)

+e "t fG(q to+ II)) (1

where E„= heap(S2 + nz)'t2 are the dyon energy levels,
and Zd = g, e ~"tT is the partition function. This formula
describes a set of Gaussian peaks centered at the transition
frequencies II„= (E,+t —E„)/lt, with the dispersion qvz.
each. The envelope function of these peaks is a CP with
approximately Gaussian form and dispersion I
where &or = top(T/Ep)'t has the meaning of an average
thermal precession frequency. The expression (16) is
asymmetric in cu, and at extremely low temperatures T ~
heap/S only the peak at co = Ap survives.

For quasi-lD AFM compound CsMnI3, according to
Ref. [11],S = 5/2, 1 = 198 GHz, Dt = Dq ——1.07 GHz,
and the estimation gives Qp = 28 GHz. . This value lies in
the frequency range which is accessible rather to the ESR
methods (note that transitions between rotator levels can

occur without momentum transfer, i.e. , at Q = 0, so that
ESR can be used for their detection). Neutron experiments
have low resolution and will probably be able to detect only
the envelope CP with the half-width I = cuT independent
of the scattering vector q, in contrast to the usual soliton
CP with I = qvT.
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