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Exact Solution of the Electrostatic Problem for a Single Electron Multijunction Trap
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We present an exact solution for the potential profile of a biased single electron trap. Analytical
expressions for the total free energy as well as the corresponding charging energy, barrier height for a
trapped electron in the store island, and threshold voltage for a single charge transfer are derived. This
enables us to demonstrate the important role of well capacitance C in determining the barrier height of
the trapped electron, and to show that systems with small well capacitance are not suitable for studying
the single electron trap. Our techniques are applicable to a variety of other single charge tunneling
systems.

PACS numbers: 73.40.6k, 41.20.Cv, 73.40.Rw

Recent advances in nanotechnology [1,2] have made
it possible to fabricate arrays of small tunnel junctions,
which exhibit the Coulomb blockade effect. Among the
systems being discussed [1], there are the "turnstile, "
where a gate electrode controlled by an rf signal is
capacitively coupled to the center of the array, and the
"pump, " where two gate electrodes controlled by two rf
signals are capacitively coupled to the electrodes inside
the array. These two kinds of devices have been used
to transfer, with the help of the Coulomb blockade
effect, a controlled number of electrons into a capacitor,
and are promising as candidates for a charge standard
for possible metrological applications and digital devices
[1,2]. However, it is known that the Coulomb blockade
can never be complete, and thus for possible metrological
applications of these two devices, it is crucial to know
the error rate of the operation, which depends on how
frequent and by what processes the electrons transit the
device in the presence of a Coulomb barrier. In order to
study the barrier confinement, a special device structurally
similar to the turnstile and pump, the single electron
"trap, " where the end of the array is connected to a well
capacitor, has been studied by many authors [3—8]. One
of the basic questions in studying the single electron trap
is the evaluation of the barrier height for the trapped
electron. Whereas numerous papers have been published
[2—8] on this subject, there are still some important
questions which remain unanswered. For example, the
role of the well capacitance C (see Fig. 1 and the
later discussion) in determining the barrier height is not
clear: In Refs. [2,3] the small well capacitance C region
(C /C ( 1)) has been studied, while in Refs. [4—8] it
is in the opposite region. The purpose of this Letter is
to focus our attention on the question of how to study
the consequent barrier confinement of the single electron
trap in a precise way, and to provide some insightful
analysis by presenting an exact analytical solution to
the electrostatic problem of the single electron trap
consisting of a finite but arbitrary number of small gated
junctions, with equal junction capacitances C and equal

gate capacitances Cg. These analytical results enable us
to demonstrate the important role of C, in determining the
barrier height of the trapped electron, and to show that the
systems with small well capacitance C are not suitable
for fabricating a high quality single electron trap.

The system with which we are concerned, the single
electron trap, is illustrated in Fig. 1, where the bias
voltage of the left edge is 40 = V and that of the right
edge is 4~+~ = U. We denote the potential on each of
the individual N —1 islands between the junctions in the
array by the column vector 4 = (4~, 4'2, . . . , 4~ ~), and
the number of excess electrons on each of the individual
N —l islands is denoted by the column vector n =
(n~, n2, . . . , n~ ~) In ad. dition, we denote the potential
and the number of the excess electrons on the store island
between the nth junction and the well capacitor as 4& and
nz, respectively. The island potentials (4, &bz) and the
number of the excess island electrons (n, n~) are related
by the charge conservation law and Kirchhoff's law, and
they obey a set of N linear equations [9]. These linear
equations can be conveniently put into a simple matrix
form

where
D' = —1 —(C + C,.)/C.

Cg C ~ t ~

g Cg cc

FIG. 1. Schematic of a single electron trap which consists of
N small tunnel junctions in series, with equal gate capacitances
Cg, and equal junction capacitances C, the end of which couples
to a well capacitance C, and an input gate capacitance C, .
The bias voltage of the left edge is V and that of the right edge
is U.
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Also, in (1) the column vector 1 = (0, 0, . . . , 1)r has
N —1 elements, and the matrix M is an N —1 by
N —1 symmetric tridiagonal matrix, having the same
diagonal elements D = —2 —Cg/C, and the same off-
diagonal elements 1. In addition, the symbol n& stands
for n~ —C U/e and the first element of n in (1) is
understood to be ni —CV/e, to accommodate the effects
of the bias voltages.

We find that (1) can be solved analytically, and the
result is

written as

e
N

F = Ep + n&R,'&nj —VQp —UQQ+J, (7)J IJ J
i,j =1

where the first two terms in the right-hand side originate
from the charging energy, with Fo a quantity independent
of the charge profile fn, n~). In addition

Qp = npe + C(V —@i),

Qjv+i = n~+ie + C (U —@~) .

(@v) C/D, R R
~1( n

)0'+R~ —
1 j

where the element of the column vector R is given by

sinhiA

sinhNA
' (3)

Also, the local voltage V; = 4; &

—4;, with 40 = V
and 4jv+] = U.

Equation (7) is a general expression for the Gibbs free
energy of a single electron trap with bias voltages (V, U),
charges e(n, n~), and potential profile itIi, &Ii~) on the
islands. First, we study the charging energy E, (k) of the
system when there is an excess electron on the kth island.
In this case, one has n; = 6;&, and the charging energy
term in (7) reduces to

with

fori ( j, and i j (N —1, (5)

and

M'
i =GM —M. (6a)

with A defined by

—2coshA = D = —2 —Cs/C.

In addition, in (2) the element of the N by N symmetric
matrix R' is given by

Ec(k) = Ep + e /2CRki, , (9)

where Ep is the same as (7), and R,', is given by (5).
In Fig. 2, we plot E, (k) vs k at three different values
of (C, + C )/C = 0.1, 1, 10, and C~/C = 0.01, 0.1,
1. As can be seen from the figure, when C, + C is
close to Cg + C [see the curve at (C, + C )/C = 1

and Cg/C = 0.01], one has E, (k) = E,(N + 1 —k). In
this case, the E,(k) of the middle island (k = 4) has
the maximum value, and an electron can be trapped
in the store (k = 7) island. An increase in the value
of C, + C [see the curves at (C, + C )/C = 10] will
further increase the barrier height of the trapped electron.
Thus, when (C, + C )/C is large and Cg/C is small, it is

, sinh(j + 1)A
G = D —1/D'. (6b) 4.0

We note that in our notation, 8 is an N —1 by N —1

symmetric submatrix to R'
~ Also we note that the R; of

(3) is the same as the matrix element R, ~ i appearing
in the problem of 1D array of N tunneling junctions with
equal capacitances and N —1 equal gate capacitances [9].
One can easily check that when C:Cg and C = C,
the R,', of (2) reduces to the corresponding form of a 1D
array with N + 1 equal capacitances C and N equal gate
capacitances Cg as studied in Ref. [9].

Equation (2), supplemented by (3)—(6), is a key result
of this paper. By using it one can evaluate the free
energy of the 1D trap analytically. Since the free energy
is a crucial quantity in determining the rate of tunneling
in small junctions, one needs to define it in a precise
way. Basically, the free energy contains two terms, the
electrostatic energy and the work done in moving the
charged soliton through the system. For a biased single
electron trap as illustrated by Fig. 1, the Gibbs free energy
as a function form of the charge profile (n, n~) can be

U
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0
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FIG. 2. Charging energy E, (k) (in units of e'/2C) for a single
electron trap with an excess electron at the kth island, as a
function of k at three different values of (C, + C )/C: 0. 1

(full curves), 1 (dotted curves), 10 (dashed curves), and
Cg/C = 0.01, 0.1, 1 (from top to bottom). Also C, C„, C,
and C„are the junction capacitance, gate capacitance, well
capacitance, and input gate capacitance, respectively. For
clarity of illustration, we have treated k as a continuous variable
whereas only the integer values are of physical interest.
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in favor of trapping electrons in the store island. On the
other hand, when (C, + C )/C is small [see the curves at
(C, + C )/C = 0.1], E, (k) increases with increasing k,
and no electron can be trapped in the store island.

Another interesting feature of (9) is that one can now
evaluate analytically the barrier height of the trapped
electron. For this purpose, it is easy to show from (9)
that the charging energy E, (k) of (9) takes its maximum
value at the position

=1 1 1+ D'e~
k = —N —1+ —ln

2 2W 1+ ale-~

subject to the conditions

+ C, sinh(N + 1)A)
C sinhNA

Cg ~ (C + C)'
C+C +C,

(10)

(11a)

(1 lb)

In the above evaluation we treated k as a continuous
variable, whereas it is an integer. Thus, to get the position
where the barrier height is a maximum, we should take
the closest integer to the value given by (10). We note
that (lla) is derived from the fact that the last term in
the bracket in (10) should be less than N + 1 so that
the k of (10) can be no greater than N, while (lib)
is obtained from the condition that the arguments of the
logarithmic function in (10) should be greater than zero.
Also, from (10) it is easy to show that in the Cs = 0 limit,

k tends to the value of 2[N —1/(1 + D')] Since k.
cannot be larger than N this latter relation indicates that
in the Cg = 0 limit, in order to trap an electron in the store
island, it is necessary to have N(C + C, ) & C.

The exact value of the barrier height AE can be
obtained from (9) as [subject to the conditions (11)],

C, = 0 and NC » C, the barrier height is

b.E=, for NC » C. (14)2C4NC + C
We note that Eq. (14) was previously obtained in Ref. [2]
(by using some approximation scheme) without noticing
the restrictive condition NC » C. It turns out that in
Ref. [3] Eq. (14) has been misused in the region NC
C, with the particular numbers N = 7, C = 10 aF, and
C = 150 aF. In fact, with these numbers, one can easily
check that the position k of the maximum charging
energy exceeds the number N, i.e., there cannot be any
real trapped electron for that particular system.

The above features of the bamer height AE are further
illustrated in Fig. 3, where we plot AE for two electron
traps with N = 7 and 10, respectively, as a function of
C, + C at three different values of Cs/C = 0.001, 0.01,
0.1. As can be seen from the figure, the barrier height
AE for the trapped electron increases when either the
number of the junctions N or the capacitance C, + C
increases, or the gate capacitance decreases. Also, the
trap conditions as given by (11) are fully illustrated by
the figure. In particular, in the small Cs/C limit, the
barrier height AE disappears, once (C, + C )/C becomes
smaller than I/N, and it approaches the value of Ne /SC
in the large (C, + C )/C limit.

Next, we determine the change of the Gibbs free energy
b, F due to some charge transfer event by means of (9).
To be definite, here we discuss the case where the charge
transfer happened between two islands k and k', while the
charges on the other islands are unchanged. We denote
the charges on these two islands before and after the
charge transfer, respectively, as (nq, nl, ) and (nq, n«], and
the net transferred charges as Q. After some algebra,
we obtain from (11) the change of the Gibbs free energy

2

( .. )

e tanhkm A sinhNA+
2C 2sinhA D'sinhNA + sinh N —1 A

(12)

Here k is understood to be the closest integer to the
value given by (10). In the Cs = 0 limit, (12) reduces
to a simple form

[N(1 + D') + I]2
2C 4(1 + D') [N(1 + D') —I] '

C + C, 1
for ' & —,(l 3)
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where the listed condition is directly deduced from (11).
From (13), it is easy to show that AE increases with
increasing N or C, + C . This is saying that a high
barrier for the trapped electron is achieved by increasing
either the number of the junctions N or the capacitance
C, + C . Also, one can now show from (13) that when

FIG. 3. Barrier height 6E (in units of e'/2C) of a trapped
electron in single electron traps with the number of junctions
N = 7 and 10, respectively, as a function of (C, + C„,)/C at
three different values of C~/C = 0.001, 0.01, 0.1 (from top to
bottom). Also C, C, , C, and C„are the junction capacitances,
gate capacitances, well capacitance, and input gate capacitance,
respectively.
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+ eV[~kO + ~k'0 + Ri k
—Ri „,], (15)

where R,', is defined by (5).
The tunneling of a charge soliton from the kth island

to the k'th island in the single electron trap is energy
favorable when the free energy b, F'(k, k') is less than
zero, and vice versa. Thus, the threshold energy V, for the
transfer of a single electron from the kth island onto the
k'th island can be obtained by equating hF'(k, k') = 0.
Applying this principle to (15), for the single electron
transfer case, we obtain

e
V, (k, k') =-

2C Ri g Ri Pl + Ago + 6g&o

Equation (16) is an interesting result. By using (16) one
immediately finds that in the nearest neighbor tunneling
sequence (k ~ k + 1), the absolute value of V, (0, 1) is
the largest for an electron tunneling into the trap, while
V, (N, N —1) is the largest for an electron escaping from
the trap. This implies that the actual tunneling threshold
voltage and the actual escape threshold voltage are,
respectively, V, (0, 1) and V, (N, N —1). In the Cg && C
limit, by using (3)—(6), we obtain from (16)

(16)

e C
V, (0, 1) = — N —1 +

2C C + C,
(17)

e C
V(N, N —1) = N —1—

2C C + C,
(18)

Note that there is a sign difference between the tunneling
threshold voltage (17), a negative value which enables
the tunneling of an electron, and the escape threshold
voltage (18), a positive value which helps the escape
of an electron. Equations (17) and (18) indicate that
in the large (C + C, )/C limit, the magnitude of both
threshold voltages tends to the value of (N —l)e/2C,
which increases linearly with the number of junctions in
the system. In other words, in the small Cg/C and large
(C, + C, )/C limits, electrons can hardly tunnel through
or escape from the single electron trap consisting of a

6F (k, k') due to the charge transfer ink, nk ) to ink, nk ).
For the single electron transfer case with n; = 6;I„n,' =
6;k, it reduces to (for convenience, we take U = 0)

2

AF'(k, k') = [Rk' k' Rk k]

large number of junctions. Also, (17) and (18) are subject
to the conditions (11), i.e., in the small C + C, limit
[(C + C,. )/C ( 1/N], there will be no trapped electrons,
and the threshold voltage V, loses its meaning.

In summary, in this paper we have presented an exact
solution (2) for the potential profiles of a biased single
electron trap which consists of N gated small junctions
with equal gate capacitances, and equal junction capaci-
tances, the end of which couples to a well capacitance.
Our study shows that in the small well capacitance limit
[(C„, + C, )/C ( 1/N], the potential profile of a single
electron trap does not show a barrier height, and there will
be no trapped electrons. Also, we have identified the con-
ditions (1 la) and (lib) for the values of gate and well ca-
pacitances for which the electron can actually be trapped.
In particular, we have shown that the well known formula
(14) for the barrier height is true only in the region where
the condition NC» C is satisfied. Finally, we note that
our techniques are applicable to a variety of other single
charge tunneling systems.
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