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Ab Initio Molecular Dynamics Study of First-Order Phase Transitions: Melting of Silicon
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We present a scheme to compute the thermodynamic properties and the phase stability of materials
based on parameter-free microscopic quantum theory. Taking silicon as an example we show that
properties like the specific entropy, the specific volume, or the heat capacity of a solid and a liquid
can be calculated accurately. In particular, we can locate the solid-liquid phase boundary and compute
how thermodynamic properties change upon melting. This greatly extends the range of first-principles
predictions of materials properties.
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Prediction of phase transformations of real materials
from first-principles microscopic quantum theory is a long
standing goal of condensed matter physics. Consider-
able progress in this field has been achieved, over the
last decade, on the basis of accurate quantum-mechanical
calculations of the electronic total energy of simple sub-
stances, using density-functional theory (DFT) within the
local density approximation (LDA) for exchange and cor-
relation. Although limited to the zero temperature phase
diagram, these studies were extremely useful to under-
stand and to predict pressure induced phase transitions in
crystalline solids [1].

In principle it would be possible to extend these calcu-
lations to finite temperature with ab initio molecular dy-
namics (MD) techniques [2], which allow one to sample
thermal fluctuations by means of atomic trajectories gen-
erated with DFT-LDA forces. However, as usual within
MD simulations, an accurate location of the boundaries of
first-order phase transformations would be hampered by
hysteresis effects associated with short simulation time,
periodic boundary conditions, etc. A possible way out
consists of calculating separately the chemical potentials
of each coexisting phase in order to find its range of sta-
bility as a function of p and T. Such calculations are pos-
sible within classical MD simulations [3] and have been
used, for instance, to study the melting transition of sili-
con (Si) [4] as modeled by the Stillinger-Weber (SW) po-
tential [5]. However, no attempts have been made so far
to study in this way first-order phase transitions within
ab initio MD, although recently, combined MD and DFT-
LDA techniques have been used to compute free energies
of point defects in crystalline solids [6—8].

In this paper, we report on a scheme to calculate
finite temperature thermodynamic properties of materials
within the ab initio Car-Parrinello (CP) method [2]. Our
approach is based on isobaric-isothermal MD simulations
combined with a recently proposed technique to compute
free-energy differences [9]. In particular, taking the
melting transition in Si at zero pressure as an example,

we show that transition temperatures, heats of fusion, and
volume discontinuities at melting can be calculated from
microscopic quantum theory. Our results are in good
agreement with experiment indicating that the overall
accuracy of DFT-LDA is similar for zero and finite
temperature properties. Even a delicate quantity like
the melting temperature, which defines the boundary
between two phases as different as a metallic liquid and
a semiconducting crystal, can be predicted within 20%
accuracy. This is similar to the DFT-LDA accuracy in
predicting the transition pressure between the diamond
and the P-tin phases of crystalline Si [10,11].

Under typical experimental conditions of constant pres-
sure and temperature, the basic thermodynamic quantity is
the chemical potential. This cannot be obtained directly
from MD simulations, but its derivatives can be com-
puted from temporal averages along isobaric-isothermal
MD trajectories [3]. Hence, a free energy or chemical po-
tential difference Ap„, between an actual and a reference
system, can be calculated by integrating a chemical po-
tential derivative along a reversible thermodynamic path
connecting the actual system of Hamiltonian 9f& to the
reference system of Hamiltonian Sf', i.e.,

1 1
QP
dA

d A(9fi —9fp)x . (1)

Here ( )x stands for a temporal average along an
isobaric-isothermal MD trajectory generated from the
Hamiltonian A (A) = A9f~ + (1 —A)Ap. Under er-
godic conditions this is equivalent to an ensemble
average. If the free energy of the reference system is
known, Eq. (1) allows one to compute the chemical
potential of the actual system.

For sufficiently close end systems, the thermal averages
in Eq. (1) can be calculated with short MD runs. It
is therefore convenient to split the calculation into two
steps by introducing an intermediate classical reference
system which, ideally, should be as close as possible to
the actual quantum system. Then short MD runs can
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be used to calculate Ap, between the actual DFT-LDA
and the intermediate reference system, while long MD
runs can be used for the less demanding calculation of
5p, between the intermediate and final reference systems.
In the present case we take SW Si as an intermediate
reference system: This provides a reasonably good model
of Si, for which the free energies of crystalline and liquid
phases are already known [4].

In order to compute 5p„we find it convenient to adopt
a dynamical method [9]. In this approach the parameter A

depends on time and switches slowly (adiabatically) from
A(to) = 0 to A(ti) = 1. Then Eq. (1) can be rewritten as

d A(t)
Ap, = (9fi —9fp) dt. (2)

dt

This has the important conceptual advantage that Ap, is
obtained from a single isobaric-isothermal MD trajectory
generated by the time-dependent Hamiltonian A (A(t)).

We used isobaric-isothermal CP simulations [12] to
describe the DFT-LDA quantum system. By letting
the cell volume Iluctuate according to Andersen's [13]
prescription, the average pressure of the simulation was
kept equal to a preset value, taken here equal to zero.
A choice of 0.04 a.u. for the volume mass ensured
coupling between volume and thermal fIuctuations. The
ionic temperature was controlled by a Nose thermostat
with mass equal to 2.5 X 10~ a.u. Following Ref. [14], an
additional thermostat was used to keep the electrons close
to their instantaneous ground state with the following
choice of parameters (see Ref. [14]):Q, = 21.5 a.u. /atom
and Ek;„o = 1.4 X 10 a.u. /atom. To speed up the
numerical integration of the CP equations, we used a mass
preconditioning scheme [15] which allowed us to use a
time step At = 0.34 fs.

We adopted a plane-wave pseudopotential approach
using a norm-conserving Bachelet-Hamann-Schliiter
(BHS) pseudopotential [16] with s and p nonlocality.
LDA exchange and correlation energies and potentials
were parametrized as in Ref. [17]. The nonlocal part of
the pseudopotential was computed in real space [18]. A
large fraction of the tests were made with a pseudopo-
tential softer than BHS but, since this pseudopotential
introduced small errors, particularly in the enthalpy
difference between liquid and solid, all our final results
were based on the more accurate, albeit computationally
more expensive, BHS potential.

We used the same number of plane waves Wpw at
different volumes and added a correction AE,„,/N to
the total energy per atom, to account for incomplete
convergence with plane waves. Since, for large %pw,
AE„,/N basically only depends on the density, we cal-
culated it for a simple reference system and fitted its
variation with Npw and the cell volume A by the for-
mula b,E„,/N = —A exp( —B(Npw/A)), with appropriate
values for the parameters A and B [19]. We checked,
with fully converged calculations on selected crystalline

0.7-

0.6-

0.5-

C0

0.4-

(3
I
I

I

B
I

,
'I

kP

(3

41

e,: vc
0, : HI, —FSg

e,a: r It.
R,Q: 4 k-pt. 4

64 atom-cell

-126

-122

-118

0.3
0 100 200 300 400 500 600

Size of cell

FIG. 1. Cell size and k-point dependence of the enthalpy and
the specific volume of l-Si at T = 1700 K. The calculation
was done using the soft pseudopotential. The enthalpies are
referred to the solid at T = 0 K. Circles correspond to I -point
calculations and squares to four k-point calculations with a 64-
atom cell, which is equivalent to I -point sampling in a cubic
512-atom cell.

and liquid structures, that convergence errors were re-
duced to less than 1% in the equilibrium volume and to
less than 7 meV/atom in the total energy.

We also considered the effect of different cell sizes and
different sets of k points for Brillouin zone integration.
Some tests are reported in Fig. 1. They indicate that both
the enthalpy difference between liquid and solid and the
specific volume of the liquid are well converged with a
216-atom cell and I, or with a 64-atom cell and four
special k points [20]. This implies that convergence is
slower for electronic than for atomic structure. Indeed
we found that average structural properties of the liquid,
such as the pair correlation function and the bond angle
distribution, depend little on the cell size and on the
k points. Basically, these properties were the same in
the present and in previous calculations by Stich, Car,
and Pamnello [21], which were performed at a constant
volume with a 64-atom cell and I . We therefore decided
to use a 64-atom cell and four special k points in all our
calculations. Size effects are also small for SW Si, in
which case the chemical potential calculated with a 64-
atom cell differs by less than 0.01 eV/atom from that
obtained by Broughton and Li [4] with a 512-atom cell.

We computed 5p, , i.e., the chemical potential difference
between DFT-LDA and SW Si, by numerically evaluating
the integral in Eq. (2). This required us to compute the
difference between the DFT-LDA and the SW total energy
function along an MD trajectory in which the electrons
were evolved in CP fashion in the usual way, while the
ions responded to forces that were adiabatically switched
from those corresponding to the SW energy function to the
CP forces. We found that a switching time of about 0.7 ps
(i.e., about 10 times the shortest vibrational period of the
solid) was sufficient to compute Ap, with an accuracy of
about 0.02 eV/atom for both the liquid and the solid at
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high temperature. The relatively short switching time is
a measure of the similarity between SW and DFT-LDA
Si. Finally, we computed the absolute DFT-LDA chemical
potential by adding to 5p, the known chemical potential of
SW Si [4].

The results are displayed in Fig. 2, where all the
chemical potentials are referred to the solid at T = 0 K,
which includes also a correction for zero-point motion of
0.06 eV/atom for crystalline Si in the diamond structure.
The statistical errors of the simulation, as indicated by the
error bars, are approximately equal to 0.02 eV/atom for
all the data points. The available experimental data are
also reported in the figure.

For the liquid we only know from experiment the
chemical potential and the entropy at melting. The en-
tropy gives the slope of the chemical potential curve. We
note that theoretical and experimental slopes are approxi-
mately the same, and the theoretical curve is only shifted
downward by approximately 0.12 eV/atom. This is a re-
markable achievement considering the large difference in
structure and bonding between the semiconducting solid
and metallic liquid phases. Recent calculations for crys-
talline Si at T = 0 K have shown that the DFT-LDA
total energy is approximately 0.26 eV/atom higher than
the essentially exact result of diffusion quantum Monte
Carlo calculations [22]. Our findings suggest that the
DFT-LDA total energy of liquid Si should be even closer
to the corresponding exact result. This can be understood
on the basis of the more homogeneous character of the
electronic density of the liquid. As we see in Fig. 2, a
relative error of the order of 0.1 eV/atom in the chemi-
cal potentials is sufficient to make an error of about 300
K in the melting temperature T . In our opinion this is
a satisfactory result for DFT-LDA. On general grounds
an accuracy of the order of 0.01 eV/atom in the chem-
ical potentials would be necessary to locate T with an
accuracy of better than 100 K. This is well beyond the
accuracy of electronic structure calculations.

A more detailed comparison between theory and exper-
iment is given in Table I, where we report several calcu-
lated thermodynamic properties at melting together with
their corresponding experimental values. All calculations
are based on temporal averages over equilibrated MD runs
lasting for about 1.5 ps.

We notice that the errors in the absolute entropies
of the solid and liquid are only 7% or less, indicating
that ab initio MD trajectories measure accurately the
motional disorder at T . The typical errors in the
enthalpies and in the latent heat of fusion AH, I are of
the order of 0.1 eV/atom, as expected from the overall
accuracy of DFT-LDA. Good agreement between theory
and experiment is also found for the specific heats
at constant pressure which have been calculated both
from the definition C = T(d2/J. , /—dT )„and from the
fiuctuation-dissipation formula kliT C = (6H )„r, giving
consistent results within the statistical errors of our
simulation.

The next quantities in Table I are the specific volumes
and the thermal expansion coefficients. It is well known
that DFT-LDA gives lattice constants of most materials
within a few percent error. This error is less than 1%
for crystalline Si. Here we find that also the volume
variation with temperature is given very accurately. In
particular, the theoretical volume discontinuity at melting
AV/V, agrees with experiment within the error bar of
the calculation and the experimental uncertainties. Notice
that, as a result of the breaking of the tetrahedral bonding
network, the thermal expansion coefficient of the liquid is
about an order of magnitude larger than that of the solid
both theoretically and experimentally.

Finally, we consider dT /dp, i.e. , the derivative of
the melting temperature with pressure, which can be ob-

TABLE I. Thermodynamic properties at the theoretical and at
the experimental melting point.
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FIG. 2. Chemical potential for s-Si (open squares) and l-Si
(filled squares). Full lines correspond to theory and broken
lines to experiment.
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tained from the Clausius-Clapeyron equation dT /dp =
T AV/AH, t T.he negative sign of dT /dp indicates that
the liquid is denser than the solid.

In the present calculation, as usual in implementations
of ab initio MD, the ions were in thermal equilibrium
at finite temperature while the electrons were close
to their instantaneous ground state at T = 0 K. Finite
temperature effects on the electrons should be small,
since T is small on the scale of the occupied electronic
bandwidth. We estimated the magnitude of these effects
at melting, using the calculated electronic density of states
for a few selected ionic configurations and by replacing
the Kohn-Sham total energy functional with the Mermin
free-energy functional at finite T. We found negligible
(less than 0.01 eV/atom) effects for the semiconducting
solid. The corrections are more important but still not
larger than a few hundredths of an eV/atom for the
metallic liquid. In this case they lead to an increase of
the entropy and of the enthalpy by 0.2k& and by 0.01
eV/atom, respectively. These effects are of the same
order of the statistical errors of the calculation and were
not included in Table I.

In conclusion, we have shown that finite temperature
thermodynamic properties of real materials can be cal-
culated from first principles. Our results indicate that
DFT-LDA describes accurately highly anharmonic situ-
ations and that it is able to predict the relative stability of
phases such as a liquid and a solid. We expect that cal-
culations based on the general methods presented in this

paper should be useful to elucidate aspects of the phase
diagrams and to predict properties of materials, particu-
larly under extreme pressure and/or temperature condi-
tions, that are difficult to attain experimentally.

We acknowledge support from the Swiss National
Science Foundation under Grant No. 20-39528.93. The
calculations were performed on the NEC-SX3 computer
of the Swiss Center for Scientific Computing (CSCS) in

Manno.

[I] See, for example, S.G. Louie, in Electronic Structure, Dy
namics, and Quantum Structural Properties of Condensed
Matter, edited by J.T. Devreese and P. V. Camp (Plenum,
New York, 1985), p. 335.

[2] R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471
(1985).

[3] See, for example, G. Ciccotti, D. Frenkel, and I.R.
McDonald, Simulation of Liquids and Solids (North-
Holland, Amsterdam, 1987).

[41

[51

[6]

[7]

[8]

[9]

[10]
[11]

[12]

I 131
[14]

[15]

[16]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

J.Q. Broughton and X.P. Li, Phys. Rev. B 35, 9120
(1987).
F.H. Stillinger and T. A. Weber, Phys. Rev. B 31, 5262
(1985).
R. Car, P. E. Blochl, and E. Smargiassi, Materials Science
Forum 86-87, 433 (1991).
V. Milman, M. C. Payne, V. Heine, R. J. Needs, J.S. Lin,
and M. H. Lee, Phys. Rev. Lett. 70, 2928 (1993).
S. Kajihara and J. Bernholc, Bull. Am. Phys. Soc. 39, 553
(1994).
M. Watanabe and W. P. Reinhardt, Phys. Rev. Lett. 65,
3301 (1990).
M. T. Yin and M. L. Cohen, Phys. Rev. B 26, 5668 (1982).
L. L. Boyer, E. Kaxiras, J.L. Feldman, J. Q. Broughton,
and M. L. Mehl, Phys. Rev. Lett. 67, 715 (1991).
F. Buda, R. Car, and M. Parrinello, Phys. Rev. B 41, 1680
(1990).
H. C. Andersen, J. Phys. Chem. 72, 2384 (1980).
P. E. Blochl and M. Parrinello, Phys. Rev. B 45, 9413
(1992).
F. Tassone, F. Mauri, and R. Car, Phys. Rev. B 50, 10561
(1994).Without mass preconditioning, it would have been
necessary to use a time step of 0.17 fs.
G. B. Bachelet, D. R. Hamann, and M. Schliiter, Phys.
Rev. B 26, 4199 (1982).
J.P. Perdew and A. Zunger, Phys. Rev. B 23, 5048
(1981).
R. D. King-Smith, M. C. Payne, and J-S. Lin, Phys. Rev.
B 44, 13 063 (1991).
In all our calculations we used a value of Npw /N
corresponding to a cutoff of 15 Ry (12 Ry with the
soft pseudopotential) for an atomic volume of 140.6
a.u. The corresponding values of A and B were A =
1.704 (6.045) eV and B = 6.13 (12.97) a.u. , where we
put in parentheses the values appropriate to the soft
pseudopotential.
A. Baldereschi, Phys. Rev. B 7, 5212 (1973).
I. Stich, R. Car, and M. Parrinello, Phys. Rev. Lett. 63,
2240 (1989); Phys. Rev. B 44, 4262 (1991).
X.-P. Li, D. M. Ceperley, and R. M. Martin, Phys. Rev. B
44, 10929 (1991).
Physics of Group IV Elements and III VCompounds, -

edited by K.-H. Hellwege and O. Madelung, Numerical
Data and Functional Relationship in Science and Technol-

ogy, Landolt-Bornstein, New Series, Group III, Vol. 17,
subvolume a (Springer-Verlag, Berlin, 1982).
I. Barin and O. Knacke, Thermodynamic Properties of In
organic Substances (Springer-Verlag, Berlin, Heidelberg,
1973).
A. R. Ubbelohde, The Molten State of Matter (Wiley, New
York, 1978), p. 239.
J.P. Gabathur and S. Steeb, Z. Naturforsch. 34A, 1314
(1979).

1826


