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Phase Separation in the Extended Hubbard Model at Weak Coupling
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The Hubbard model including nearest-neighbor interaction is studied at T = 0 on a d-dimensional
hypercubic lattice (d ~ 3) close to half filling. It is shown that the ground state at weak coupling
is phase separated, consisting of homogeneous lower-density and antiferromagnetic or charge density
wave higher-density regions. Incommensurate phases are unstable. The exact critical doping level and
the exact order parameter are renormalized relative to the Hartree results. The renormalization factor at
weak coupling turns out to be identical to the result found previously for the same model at half filling.

PACS numbers: 75.10.Lp, 71.45.Lr, 75.30.Fv

En recent years the Hubbard model [1—3] has advanced
to one of the most important standard models for inter-
acting electrons on a lattice. The success of the Hubbard
model is based on its ability to explain a number of im-
portant phenomena in condensed matter physics. Among
these are the (Mott-Hubbard) metal-insulator transition
[1,4], antiferromagnetism [5,6], and several normal-state
properties of high-T, materials [7,8]. Unfortunately, little
is known exactly about the ground state or the thermody-
namics of the Hubbard model. Nevertheless, the model
at half filling is qualitatively well understood, mainly as a
consequence of the exact solution in one dimension [9,10]
and several rather general rigorous results [11].

The situation away from half filling is more severe.
Here there exists basically only one rigorous result, due
to Nagaoka [12], stating that the ground state for a
single hole in a half-filled band is ferromagnetic in the
extreme strong-coupling limit (U ~). Furthermore,
various approximate (Hartree-Fock [13,14] and slave-
boson [15]) methods have been applied to study possible
commensurate and incommensurate phases. Much work
has also been done on the t-J model, which is a
simplified strong-coupling version of the Hubbard model.
The t-J model displays, apart from commensurate and
incommensurate phases [16],various indications of phase
separation at small doping [17—20]. The latter result
is particularly important in view of the experimental
evidence for phase separation in high-T, superconductors
[21]. On the basis of these results it has been conjectured
by Emery and Kivelson [18] that phase separation occurs
rather generally in anti ferromagnets at small doping,
Indeed we will see below that the ground state of the
Hubbard model at weak coupling is phase separated. This
conclusion remains true if one considers the extended
Hubbard model, which contains also nearest-neighbor
interaction.

The purpose of the present Letter is to present new ex-
act results on the phase diagram of the doped extended
Hubbard model in the weak-coupling limit. The main re-
sult to be found below is that the ground state of extended
Hubbard model at weak coupling is phase separated,

consisting of regions with long-range antiferromagnetic
(AFM) or charge density wave (CDW) order at density
n = l and disordered regions at density n = l —6,. ~ l.
Moreover, we show that the exact results for the order
parameter and for the critical doping concentration 6, .

are strongly reduced by fluctuations relative to the corre-
sponding Hartree results. The renormalization factor can
be calculated exactly and turns out to be identical to that
found previously [22] for the model at half filling. These
results will be derived for the extended Hubbard model
on a hypercubical lattice in high dimensions (d )) l).
The application kept in mind is that of the model in
d = 3; finite dimensionality will be accounted for in a l/d
expansion.

The extended Hubbard model describes hopping of
electrons (H, ), interacting with each other through on-
site (HU), and nearest-neighbor (Hv) Coulomb repulsion.
Accordingly, its Hamiltonian has the form [23]

where

H=Ht+HU+Hv+H

1

cia cj rr

(i j),o-

H~= —p n;

HU = Ugntnt,
V

H, = —Pn;n„.
(ij)

Here c; (c; ) creates (destroys) an electron with spin o-
at site i, n; =—e; e;, n; = n;~ + n;t, and d is the space
dimension. The prefactors in H, and H~ are chosen such
that a finite energy contribution is obtained in the limit
d ~ ~ [24]. In taking the weak coupling limit U, V E 0
we keep the ratio v = V/U fixed. Moreover, we assume
U ) 0 and V & 0 (corresponding to Coulomb repulsion)

In order to demonstrate that phase separation occurs
we proceed as follows. We first determine the phase
diagram in Hartree approximation, for both commensurate
(AFM or CDW) and incommensurate phases. Already
in Hartree approximation phase separation is favored at
weak coupling. We then show that the only effect of
the fluctuations at weak coupling is to renormalize the
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The same value 6~ is obtained if one calculates the
divergence of the RPA susceptibility in the homogeneous
phase at wave vector q = Q = (m. , vr, 7r, . . .). Note that
the order parameter has a mean-field critical exponent of
1/2 near 6 = B~. One can also calculate the energy gain
per site Fz due to symmetry breaking. One finds

This result shows that symmetry breaking leads to a small
energy gain, of order Ho. The lowest ground state energy
is obtained for the phase with the largest value of u.
Thus, like at half fillin, the AFM (CDW) phase has lower

[
energy if v ( 2 (v ) 2). Even more interesting than

Es(6) is the difference between the ground state energy
E(B) at concentration 6 and the ground state energy at
half filling. The result is

E(6) —E(0) = —(2V + z U)6 + 2vd(0)(Hp) 4 (8/Bi),
where

2x(I —4x) (x ( 1),
~(1 + ~x2) (x ) 1). (2)

A sketch of E(6), or rather 4(6/8~), is given in Fig. 1.
Equation (2) clearly shows that the ground state energy is
not convex as a function of particle number, at least not for

Hartree results, implying that the exact ground state of the
extended Hubbard model, too, is phase separated.

The Hartree approximation for commensurate (AFM or
CDW) phases is defined by the usual decoupling scheme
[22] for the interaction terms in (1). The averages (n; )
occurring in the Hartree Hamiltonian are determined by
(5 ) =

2 Ab, (in the AFM phase) or by (n;) = n + gQ (jn
the CDW phase). Here 6 denotes the order parameter and
I = + 1 on one sublattice [labeled by (+)] and A = —1 on
the other [labeled by (—)]. The order parameter b, can
be calculated from the consistency requirement (n;i)z =
2(n ~ b, ) if i E (~). One finds a nontrivial solution
6 ~ 0 only for 6 ( 6t, where 6~ is the critical density
of holes.

The Hartree approximation yields the following results.
At weak coupling both the order parameter and the critical
doping concentration 6~ are exponentially small. The
scale for both is set by the Hartree gap parameter Ho at
half filling, which is at weak coupling, including the 1/d
corrections, given by [22]

1 1 1
Hp —2&2exp l— 7+

2nUvd(0) 2 4d j
Here n =

2 (n = 2v —2) in the AFM (CDW) phase,
vd(e) is the density of states for U = 0, and 7 = 0.577
is Euler's constant. In terms of Ho, the order parameter
A(6) and the critical density Bi are given by

0
0 l.0 2.0

FIG. 1. The energy of the antiferromagnetic state as a func-
tion of doping (solid curve), compared to the energy of the
homogeneous phase (dashed curve), and that of the phase sepa-
rated state (long-dashed curve).

6 ( Bi. Since this is thermodynamically impossible (it
implies a negative compressibility), one has to conclude
that pure AFM or COW symmetry breaking is not stable.

A priori there are two possible solutions to this prob-
lem. The first possibility is that the broken-symmetry
phase is indeed commensurate, but that the transition is
first rather than second order. From (2) one can con-
struct a thermodynamically stable (phase separated) state
by means of Maxwell's construction (long-dashed line in
Fig. 1): The stable state consists of a mixture of AFM
or CDW regions (at density n = 1) and disordered re-
gions (at density n = 1 —63). The critical density of
holes 63, below which such a phase separated state is
stable, follows from (2) as Bi = ~28i. The second pos-
sible solution to the nonconvexity problem is that the
broken-symmetry phase is incommensurate, rather than
commensurate. This possibility will be considered next.

The simplest way to investigate possible incommensu-
rate symmetry breaking is to calculate the spin-dependent
density-density susceptibility in RPA approximation in
the homogeneous phase. The calculations are very simi-
lar to those carried out for spinless fermions by Uhrig and
Vlaming [25]. One finds that the homogeneous phase be-
comes unstable at wave vector q if either 1 = U+p(q) or
1 = (—4Vpq —U)~p(q), where ~p(q) is the susceptibility
of the noninteracting system and pq =— d ' g„,cos(q„).
The analysis of the RPA criterion is simple only in high
dimensions (d = ~), since in this case ~p(q) depends
upon q only through pq. One finds that the optimal
value p, pl of pq, for which the RPA susceptibility di-
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verges first, is related to the effective chemical poten-
tial p, o = p, —(2V + 2U)n as p, o/Ql + p, &,

——0.924.
The same relation was found in Ref. [25] for spinless
fermions. From this relation between p, o and p, p, one
can calculate the critical concentration of holes 6q for the
optimal incommensurate phase. The result is Bq/6~ ——

1.278. However, since phase separation occurs already
at 6q = ~26~, one concludes that at weak coupling B~ (
62 ( 63 so that incommensurate phases are suppressed
and phase separation dominates.

Although these arguments clearly demonstrate that
phase separation must occur, still the nature of the
phase separated state could be more complicated than
the mixture of AFM or CDW and homogeneous domains
discussed above. One could imagine other scenarios, such
as the coexistence of incommensurate and homogeneous
domains (near 63) or a coexistence of incommensurate
and AFM or CDW domains (at low doping). Such
scenarios depend crucially on the form of the energy
as a function of doping in the incommensurate broken-
symmetry phase. To rule out such more complicated
scenarios we investigate E(6) for 6 ( 62. We consider
an incommensurate spin density wave [26] spiraling in
the x-z plane at wave vector q 4 Q. The order parameter
is then defined through (S ) + i(S ) = zb, e' 'q, where S;
denotes the Heisenberg spin. The corresponding Hartree
Hamiltonian can be diagonalized by standard methods.
One finds equations for the order parameter, the ground
state energy, and the Green functions. The analysis of
these equations for 6 ( 62 is rather awkward unless d =

In this case one can show that the optimal solution
has the properties 5 60, p, o

—Ho and p pl

if li/62 0. Moreover, the ground state energy of the
optimal incommensurate phase is nonconvex as a function
of particle number: 6 E/Bn ——Q~/2 ln(1/6) ~ —~ at
small doping. Hence, this phase, too, cannot be stable. As
a consequence, the more complicated scenarios, discussed
above, can be ruled out: The stable (phase separated)
ground state is indeed a mixture of purely AFM and
homogeneous domains.

Next we address the effects of fluctuations on the
Hartree results, which will be labeled by a superscript
"H" from now on. From Ref. [22] we know that, to
obtain exact results in the broken-symmetry phase at weak
coupling (U, V j 0), one has to go to second order in
perturbation theory. There are various ways to do this
[27—29]. Here we use perturbation theory at constant
order parameter [27]. The diagrams to be calculated in
this approach away from half filling are the same as those
considered in the half-filled case [22]; the interpretation
of the lines in the diagrams (Green functions) is of course
different. Below we present the main results of this
calculation. Details will be published elsewhere.

The main result of the diagrammatic study is that, in
the AFM or CDW phase, the exact critical concentration

of holes 6], the exact order parameter 5, and the
exact energy gain Es(6) can be expressed in terms of
their Hartree equivalents and a scaling factor q(v) =
exp( —Co —Cid '). Here Co and Ci take the form

Ci =

in+2 + 1),
2 2a'

(a —1)v
2A'

+Co —+ v+4'

which is identical to the result found at half filling [22].
Numerical values in d = 3 are q = 0.282 for the pure
Hubbard model (v = 0) and q = 0.179 for v = 2. The
exact expressions for 6i, ll, (6), and Es(6) are given by

6] —q6i

A(6) — qA (6/q) (U, V ] 0),
Es(~) —q'Es (~/q).

Clearly the system can still gain energy by breaking the
symmetry (Ez ( 0), so that fluctuations do not suppress
the tendency toward long range order. Furthermore, the
exact energy difference E(6) —E(0) is given by

E(6) —E(0) = —(2V + z U)6 + 2vd(0)q Ho&I~(6/6&),

with C&(x) given by (2). Hence, 8 E/Bn2 ( 0 for all
6 ( 6] also when fluctuations are taken into account. As
a consequence the pure AFM or CDW phases are again
unstable. This demonstrates that, if only commensurate
phases are considered, phase separation will actually
occur in the extended Hubbard model and is not an artifact
of the Hartree approximation. The critical concentration
of holes, below which phase separation occurs, is 63 =
~26, = ~2qB,".

Incommensurate phases might interfere with phase sep-
aration only if the incommensurate q factor is significantly
larger that the one found above for commensurate phases.
To investigate whether this happens I calculated q(v) in
the incommensurate broken-symmetry phase. In d = ~
one can show that the commensurate and incommensurate

q factors are, in fact, equal. The conclusion is therefore
that, at weak coupling, incommensurate phases do not in-
terfere with phase separation, .so that the ground state of
the extended Hubbard model is phase separated.

Concerning the relevance of our results for finite U, V,
from a simple continuity argument it is clear that phase
separation, found here in the weak-coupling limit, will be
dominant for a finite range of interactions. The size of
the phase separation region can be estimated within the
Hartree approximation and turns out to be strongly dop-
ing dependent. Near half filling both the commensurate
and incommensurate phases are unstable for all U, V ~
0. On the other hand, near 6, incommensurate phases
are stable from Uo = 0.56/(4v + 1) onwards. Hence,
phase separation is to be expected at weak coupling
(U ~ Uo) and probably also at larger U for small doping
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(8 « 8,). Recently, the magnetic phase diagram of the
~-dimensional Hubbard model has been studied by Fre-
ericks and Jarrell in a Monte Carlo simulation [30]. In
the simulation stable incommensurate phases are found
(at positive temperatures) for 6 ~ 0.025, ~2 ~ U ~ 7~2.
The present work shows that phase separation is to be
added to the phase diagram in the region where both U
and 6 are small. A detailed comparison to the simulation
requires the extension of our results to T ) 0, which is,
in principle, straightforward. Clearly, the renormalization
effects in the simulation (at finite values of U) will be
more complex than the simple scaling behavior in terms
of a q factor, found here for U ~ 0. In general, the renor-
malization effects will depend on the interaction strength
U, the doping concentration, the temperature, and the or-
dering channel. It seems likely that such nonuniversal ef-
fects can be we11 described by se1f-consistent perturbation
theory provided U is not too large (U ~ 2).

To summarize the results, we studied the phase diagram
of the extended Hubbard model away from half filling
at weak coupling on a hypercubic lattice in dimensions
d ~ 3. Finite dimensionality was accounted for in a 1/d
expansion. Our main result is that the ground state of
the extended Hubbard model at weak coupling is phase
separated, consisting of AFM or CDW higher-density
and disordered lower-density domains. Incommensurate
phases are suppressed. This result adds support to the
conjecture [18] that phase separation occurs generally
in slightly doped antiferromagnets. Vfe also found that,
even in the limit U, V 0, the Hartree results for the
critical doping level i5,. and for the order parameter b, (B)
are renormalized by a factor q ~ 1. The implication of
this result is that thermodynamic and transport properties
cannot be calculated reliably in Hartree approximation for
any U, V ) 0, at least not in the broken-symmetry phase.
We estimated that phase separation persists up to Uo =
0.56/(4v + 1) near 8„ the phase separation region for
6 « 6, may well be larger. These exact results, which
are based on a 1/d expansion at weak coupling, will

hopefully lead to more insight into the doped Hubbard
model in low dimensions (d = 3, perhaps also d = 2) and
its relevance for real materials.
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