
VOLUME 74, NUMBER 10 PHYSICAL REVIEW LETTERS 6 MARcH 1995

Nonequilibrium Roughening of Interfaces in Crystals under Shear: Application to Ball Milling
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A simple kinetic atomistic model is proposed for describing crystals submitted to sustained shearing,
acting in competition with thermally activated diffusion. Monte Carlo simulations are performed on
alloys with positive heats of mixing. The results provide a clear understanding of recent experiments
showing that chemical mixing of immiscible elements can be induced by ball milling. At moderate
shearing rates, an analytical model shows that such driven systems exhibit nonequilibrium roughening.

PACS numbers: 81.40.—z, 05.40.+j, 68.35.Fx

The behavior of surfaces and interfaces in open dis-
sipative systems has recently received much attention
(for a review see [1]) owing to its relevance for kinetic
roughening during such processes as thin-film deposition,
oxidation, and sputtering. In these situations an external
forcing introduces a microscopic perturbation at a surface
or interface which acts in competition with some relax-
ation process. We consider here the related case where
the perturbation introduced by the external forcing has a
macroscopic component, such as for crystals submitted to
sustained shearing. This type of forcing has also become
of interest, as mechanical alloying has been shown to
be an important method for synthesizing nonequilibrium
phases (for a review see [2]). It was noted previously that
phase transformations taking place in such driven systems
must be analyzed from the point of view of a nonequilib-
rium dynamical system [3—5].

To illustrate how shearing leads to phase formation and
to elucidate the role of kinetic roughening at interfaces in
this process, we propose a simple atomistic kinetic model.
Consider a crystal where atoms are allowed to move
because of two mechanisms acting in parallel: Atoms are
shifted by shears along randomly selected glide planes,
while, concurrently, individual atoms exchange sites with
vacancies via thermally activated jumps. As an example
of the model, Monte Carlo simulations were performed
on a rigid lattice for alloys having large miscibility gaps.
This example is particularly germane since it is presently
controversial how solid solutions can be formed in these
systems by ball milling, e.g. , Cu-Fe [6] or Cu-Co [7].
We will show that, during shearing, planar interfaces
become increasingly rough, leading to refinement of
the microstructure and eventually to complete chemical
mixing of the system. We will then use the procedure
introduced by Edwards and Wilkinson [8] to construct
an analytical model for studying interfacial roughening in
crystals under shearing. We will show that, owing to the
macroscopic component of the perturbation introduced by
shearing, the usual dynamical scaling obtained in models
describing surface growth [9,10] is not obeyed.

A simple measure of the intensity y of the external
forcing in our model system is the ratio of the forced
jump frequency to the thermally activated one. Two

limiting cases are rather trivial: (i) for y = 0, thermally
activated diffusion will drive the system to its equilibrium
state, and (ii) for infinitely large y, the system transforms
to a random solid solution. We therefore focus on the
behavior at intermediate values of y.

For the Monte Carlo simulations, a face centered cubic
(fcc) crystal was constructed from an N X N X N (N =
16 to 64) simple rhombohedric crystal with periodic
boundary conditions. The faces of the rhombohedron cor-
respond to [111)planes of the fcc crystal. An AO5Bos
alloy is considered. A and 8 atoms interact with their
nearest neighbors through pair potentials e;, (i and j equal
A and B). The potentials are chosen to reproduce an esti-
mated critical temperature of 1573 K in the Cu-Co sys-
tem; we thus set V: 6'' + t jj 26'j = 0.05533 eV
[11]. The equilibrium phase diagram resulting from this
choice of potentials has been previously published [12].
A single vacancy is then introduced into the crystal.
The rate of exchange between this vacancy and nearest-
neighbor atoms is computed using standard rate theory
[13]. The activation energy for vacancy motion is the
energy required to break the bonds between the jump-
ing atom and its surroundings less the energy recovered
when the atom is placed at the saddle point position.
These frequencies obey detailed balance. For simplicity,
we set Egg = 6'ggg. The only relevant parameters are then
p (set to 10' s ' for reproducing a typical preexponential
diffusion coefficient of Do = 10 4 m2 s ') and the saddle
point energy E, (chosen to give a vacancy migration en-

ergy of 0.8 eV in pure A or pure B)
A residence-time algorithm is used to select the next

atom to be exchanged with the vacancy [14]: this makes
it possible to follow the evolution of the system in physi-
cal time, measured in seconds. The time between two
shearing events is chosen at random so as to repro-
duce a selected average shearing frequency. Because of
the periodic boundary conditions, shears are introduced
in pairs, i.e., a slice of the crystal is shifted with respect
to the remaining crystal. For each shearing event the
following parameters are selected at random: one of
the four (111) planes of the fcc crystal for determining
the active glide system, one of the six nearest-neighbor
vectors lying in this plane for determining the vector of
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the shift to be applied, and the locations of the first and
last planes to be shifted. A quantitative comparison with
experiments is difficult since the actual shearing rates
during ball milling can only be roughly estimated, and
since the nonequilibrium vacancy concentration reached
under plastic deformation depends on time, temperature,
shearing rate, and microstructure [15,16]. As we are here
interested in the qualitative evolution of the steady states
on going from near equilibrium to far from equilibrium
situations, we keep constant the vacancy concentration in
the simulations. For quantitative comparisons, rescalings
of time and shearing rate will be necessary. From the
analytical model discussed below, it is shown that a
rescaling of the shearing rate will not affect the sequence
of steady states.

For characterization of interfaces, the following proce-
dure was used: A coarse graining of the initial rhombo-
hedron lattice of parameter a into a simple cubic lattice
of parameter ~2a was performed; a site in this coarse-
grained lattice belonged to the B-rich phase whenever its
local concentration of 8 atoms was larger than 0.5 (as
measured by counting up to second nearest neighbors of
the fcc lattice); the 8-rich phase was easily identified as
the largest connected set of such sites; interfacial sites on
this coarse-grained lattice were those which had at least
one neighbor belonging to the opposite phase. When in-
terfaces do not contain any overhang, the height of the
interface at position r = (x, y) is given by a single-value
function Z„and we calculate height-to-height correlation
functions G(vari, t) = ([Z„(t) —Z, +„,(t)] )'t (the brackets
denote an average over all possible ro and a spherical av-
erage over r) and their Fourier transform.

Figure 1 illustrates typical steady-state configurations
obtained at a temperature T = 400 K on increasing the
shearing rate y,h. while a fiat (111) interface between
almost pure A and pure B bulk phases is stable at very
low y, h values, (a) for y, h

= 1 s ' the interface remains
sharp at the atomic scale, but now it exhibits undula-
tions; (b) for y, h

= 10+3 s ' a refined microstructure is
observed; however, the two phases are still distinguish-
able and fully connected; (c) for y, h

= 10+s s ' a nearly
random solid solution is stabilized, as indicated by the
small value of the first Warren-Cowley short range order
parameter [12] n& = 0.1145. From this sequence and the
kinetic paths taken by the system, it is seen that there are
two different types of mixing in the alloy. At moderate
shearing rates [Figs. 1(a) and 1(b)], the interface remains
sharp but the initial Oat interface is unstable and develops
undulations. Atomic mixing remains incomplete; in fact,
the mutual solubilities increase only to =0.1%. At high
shearing rates [e.g. , in Fig. 1(c)] the width of the inter-
face increases due to the atomic mixing produced by each
shear, and to the roughening of the interfaces; eventually
a solid solution is formed.

Fourier analysis of the interface shows that, at moderate
shearing frequencies [as in Fig. 1(a)], the smallest wave
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FIG. l. Typical steady-state microstructures as observed in a
(1 1 1) plane, for (a) y, h

= 1 s ', (b) y, h
= 10+3 s ', (c) y, I,

=
10+' s '; they were typically obtained after 250, 30000, and
40000 shears in (a), (b), and (c), respectively. ln all cases
the initial state was a bilayer of pure A and pure 8, and the
temperature was held constant at T = 400 K, X = 64.
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FIG. 2. Height-to-height correlation functions for y, h
= 100

s ' and T = 273 K. o, &&, +, and 4 correspond to times
3.9 X 10, 7.6 X 10, 3.2 X 10", and 6.2 X 10 s, respectively.
The inset shows the collapse of the last three curves when
G(r, t)/G(r, „,t) is plotted as a function of r (r,„=N/K6
due to the rhombohedral cell). G and r are given in units of a.

vector is most prominent. Furthermore, G(IrI) exhibits
linear behavior at small values of IrI, as shown in Fig. 2.
Indeed, a sine wave leads to such a behavior, with
the slope of G(IrI) being proportional to the amplitude
of the wave. When the shearing rate is not too high
[Fig. 1(a)), the amplitude of the wave grows and reaches
a steady-state value. However, if the shearing rate is
increased, waves of higher k vector also become excited.
This leads to the production of "fingers" of one phase
protruding into the other, and eventually to a refinement of
the microstructure, as seen in Fig. 1(b). Microstructures
with wavy interfaces were indeed observed during ball
milling experiments [6,7]. The degree of refinement
can be measured by computing the first moment of the
structure factor of atomic configuration, S(IkI), given
by &(Ikl) = &IN X;(n; —0.5) exp(27rik r)I ) where n;
equals 1 or 0 depending if the site i at position r; is
occupied or not by a B atom; the bracket denotes a
spherical average over k. It increases from 0.04a ' for
the initial configuration to 0.13a ' at steady state for the
conditions of Fig. 1(b). The same steady-state value is
obtained by starting the simulations with the nearly solid
solution of Fig. 1(c) and lowering the shearing rate to
y, h

= 10+ s ', while keeping T = 400 K. This result
indicates that there is only one stable steady state for
the system. It is noteworthy that this steady state with
a mesoscopic microstructure has no equivalent in the
crystal at thermal equilibrium. Furthermore, the degree
of refinement continuously increases on increasing y, h'.

no instability of the steady-state system towards a solid
solution at a critical level of refinement is observed,
which is contrary to predictions of models based purely
on thermodynamics arguments [6,7].

Similar sequences have been obtained for temperatures
ranging from 273 to 700 K. The only major difference

(FoEo) = (~/4g)v'N',

(g(k p)g( k, p)) = v N /4k a (lb)

with an equation similar to Eq. (lb) for k = (0, k~); v
is the volume v = ha~,' the brackets denote ensemble
averages over all possible shears. Equation (1) already
points out two important results: (i) the average position
of the interface [Eq. (la) will exhibit large fluctuations,
as indeed observed in the simulations], and (ii) the noise
induced by a shear increases strongly at small k.

For the relaxation, Wolf and Villain [17] have pointed
out that in systems where interfacial fluxes are derived
from chemical potentials the drift term should be propor-
tional to —MV Z„ i.e., to —Mk Zk in Fourier space (with
k = IkI). M is the atomic mobility at the interface and
is therefore proportional to the vacancy concentration C .
We will assume that under moderate shearing intensities,
the drift term has this same dependence. A last assump-
tion is that the noise term arising from the thermal mo-
tion of the vacancy is negligible compared to the noise
induced by the shears. This assumption was checked
a posteriori, since its validity leads to height-to-height
correlation functions that are proportional to (y,h/M)'/,

is that higher shearing frequencies are required at higher
temperatures for stabilizing the same state: e.g. , T =
237Kandyh =1s ' orT =400Kandyh =10 s
[Fig. 1(b)] lead to microstructures with the same degree of
refinement. Qualitatively, the same roughening and mi-
crostructure refinement as observed in Fig. 1 are obtained
by fixing y, h and decreasing T.

We now propose an analytical model for studying the
kinetic roughening of interfaces in crystals under shear.
Existing models for kinetic roughening consider the
case where the external forcing produces a microscopic
perturbation of the interface (e.g. , the landing and sticking
of an atom onto a growing surface): this is not the
case here since a single shearing results in a shift of
a number of atoms, of the order of the interfacial area
times the atomic interfacial density. Following Edwards
and Wilkinson [8], we derive a Langevin-type equation
for the case of system submitted to shearing frequencies
that are moderate enough to maintain sharp interfaces and
avoid overhang. Consider an N X N X N simple cubic
lattice of parameter a (L = Na) with periodic boundary
conditions (the specific lattice is not relevant for the
following); this crystal is submitted to shearing on {100)
planes which produce steps of height h at the interface.
The height of the interface at position r is defined by Z,
with r = (x, y) or equivalently by its Fourier transform
Zk with k = (k„,k~). We first compute the contribution
from the shearing alone. Because of the random character
of the shearing, the perturbation gk added by one shear to
the position of the interface has zero mean for all k. A
straightforward calculation shows that the only nonzero
fluctuations are
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u = 1.22+ 0.05

0.1
10 100

FIG. 3. Evolution of the steady-state width of the interface
o. (in units of a) as a function of the system length L (in
units of a); each point results from more than 500 independent
measures; the solid line gives the best power law fit o- ~ L .

and this dependency was indeed observed in the simula-
tions. The position of the interface is thus described by
the following Langevin equation:

BZk/Bt = —Mk Zk + $k, (2)

where gk is given by Eq. (1). Simple models yield a
power law dependence of C, and thus M, with y, h

[15,16]; this could be implemented in Eq. (2). Since the
exponents in such power laws are smaller than unity [16],
keeping M constant, as done here and in the simulations,
only shifts the values of y,h. From Eq. (2), it is seen that
roughening of the interface is expected to first develop at
vector k,„=27r/L, since it is the most affected by a
shear and it undergoes the smallest recovery rate. From
Eq. (2) the height-to-height correlation function G(~r~, t)
can now be computed using the procedure of [8]: It is
shown to be a linear function of r = ~r~ at small r values
and to saturate at large r,. this is also observed in the
simulations (see Fig. 2). Furthermore, calculation of the
steady-state width of the interface o. (the rms of Z, ) yields
o- ~ (y,h/M)'lzLsl2. The large roughness exponent found
in this case, n = 5/2, is a direct consequence of the
macroscopic character of the perturbation introduced by
a single shearing. After a transient regime G(r, t) obeys
an unusual but simple scaling: The data taken at different
times collapse onto a single curve when G(r, t)/G(r, „,t)
is plotted as a function of r as shown in the inset of
Fig. 2. In Fig. 3, the steady-state width of the interface
obtained in the simulations is plotted as a function of L;
a power law provides a good fit of the data, but with an
exponent n = 1.22 ~ 0.05 rather than the predicted 2.5.
We presently ascribe this discrepancy to (i) the partial
trapping of vacancies at interfaces in the simulations [18],
which results in a dependence of M with L when the
bulk vacancy concentration is held constant, and (ii) the
existence of some bulk diffusion, implying that a second
recovery term proportional to —k ZI, may be required
in Eq. (2). Both effects result in a slower growth of

the interface width with L. Further work is required to
incorporate these effects in the model.

In conclusion, it is shown from simulations and ana-
lytical treatment that interfaces in crystals under shearing
are expected to be rough. This nonequilibrium roughness
induces a refinement of the microstructure, as observed
experimentally. The kinetic approach introduced here
provides a clear rationalization of ball milling experiments
showing the formation of solid solution in systems with
positive heat of mixing. The simulations suggest that a
mesoscopic mixture of phases can exist at steady state at
appropriate temperature and shearing rate.
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