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First-Order Phase Transition in Three-Dimensional QED with Chem-Simons Term
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We have studied the chiral phase transition in three-dimensional QED in the presence of a Chern-
Simons term for the gauge field. There exists a phase where the chiral symmetry is broken dynamically,
and we have determined the critical line for this symmetry breaking as a function of the effective
coupling and the strength of the additional Chem-Simons term. In the presence of a Chem-Simons
term, the chiral phase transition turns out to be first order, in sharp contrast to the phase transition in

pure three-dimensional QED.
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Dynamical symmetry breaking in three-dimensional
quantum electrodynamics (QED3) has attracted much
attention over the last 10 years, both from a purely theo-
retical field point of view and because of its applications to
condensed matter physics in connection with phenomena
occurring in planar surfaces [1—5]. A natural extension
of pure QED3 is to add a Chem-Simons (CS) term for the
gauge field [6], which breaks parity explicitly. Indeed the
statistics-changing CS term, together with the question of
whether or not there is a dynamically generated fermion
mass, plays a key role for variants of QED3 to be effective
theories for high-T, superconductivity and the fractional
quantum Hall effect [5]. Furthermore, QED3 also has im-
plications for high energy physics and physics of the early
Universe, since three-dimensional models are the high
temperature limit of the corresponding four-dimensional
theory. Recently, it has been suggested that the effective
potential for high temperature QCD is also related to CS
gauge theories [7].

The existence of the CS term leads to a novel feature
in QED3, namely a first order chiral ph-ase transition, as
we show in this Letter. The CS term generates a parity
odd mass term for the fermions, but in addition there
might be a parity even mass, which breaks chirality [8,9].
Dynamical chiral symmetry breaking, a nonperturbative
phenomenon, can be studied using the Dyson-Schwinger
(DS) equation for the full fermion propagator. Both a
numerical study of the full (truncated) DS equation and
an analytical study of the approximated equations show
that there is a first-order phase transition. This is quite
remarkable and in sharp contrast to the infinite order phase
transition one finds using the same truncation scheme in
pure QED [1,2].

The Lagrangian in Euclidean space is

= t/1(i) + eg —m, —rmo)P + 4F,
I .+ 2 &|&p, vp~p, o v~p + ~gauge fixing ~

with the dimensionful parameter 0 determining the rela-
tive strength of the CS term. We use four-component
spinors for the fermions and a four-dimensional represen-
tation for the y matrices. The matrix ~ is defined in such
a way that the term mopr1it is odd under a parity trans-
formation [9,10]. Also the CS term is odd under a parity
transformation, the other terms in the Lagrangian are in-
variant under a parity transformation.

With such a representation we can define chirality simi-
lar to four-dimensional QED. Without an explicit mass
m, for the fermions, the Lagrangian is chirally symmetric,
but the parity even mass m, breaks this symmetry. Note
that the other mass mo is chirally invariant. Just as in
pure QED, chiral symmetry can be broken dynamically
due to nonperturbative effects, which can be studied by
solving the DS equation for the fermion propagator with
both explicit masses m, and mo equal to zero.

The standard way to truncate the DS equation in QED3
is the 1/N expansion [11], where N is the number
of fermion flavors. The coupling constant e has the
dimension of mass, and we use the large N limit in
such a way that e f 0 and the product Ne~ remains
fixed: Ne2 = 8n with n fixed. In this 1/N expansion
the one-loop vacuum polarization has to be taken into
account, because this vacuum polarization is of order 1:
Using bare massless fermions, the transverse part of the
vacuum polarization is just II (q) = —ct ~q ~ [1]. It is easy
to show that at order 1 there is no parity odd part of the
vacuum polarization.

The full vertex is replaced by the bare one, because that
is the leading order contribution in 1/N In order to be.
consistent with the requirement that the vertex renormali-
zation and the fermion wave function renormalization are
equal, we use a suitable nonlocal gauge function [12]. In
pure QED, one can construct a gauge in which the wave
function renormalization is exactly 1. In the presence of
a CS term, this condition can only be satisfied up to order
iJ/N, but we are considering small 0 only. The proper
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B=(p) = 8a d3k 1

N (2') k A~(k) + B~(k)

x B (k) 2Dr(q) +
q

k. q~ 2A (k)D (q), (5)
q

where DT and Do are the transverse and the parity odd
part of the gauge boson propagator

'( ') = (6)(q' + nlql)' + e'q' '

Do(q') = -elql
(q2 + nlql)2 + e'q~ '

and q = k —p. Note that the equations for A+ and
B+ decouple from the ones for A and B . It is also
important to observe that once we have found a solution
for A+ and B+, we automatically have also a solution for
A and B: namely the set A = A+ and B = —B+.
That means that we can always construct a chirally
symmetric (but parity odd) solution, with B, = 0. The
question of dynamical chiral symmetry breaking turns into
the question of whether or not there exist twa (or more)
solutions of the set of integral equations.

Without the CS term there is dynamical chiral symme-
try breaking only for A ) A, = 3/16 [2], where we have
defined the effective coupling A = 8/Nrr . We expect a
similar situation in the presence of the CS term, at least if
the parameter 0 is small. That means that for A ~ A, we
only have the chirally symmetric solution of the above

choice for the gauge function is [9]
2n 4ne e Iql

a(q) = 2 q D (q) + + arctan
lql q' n' + nlql + e'

l2 g2 2 + g2
+ ln (2)

q2 (n + lql)' + e' )
With this gauge, we also satisfy the Ward-Takahashi iden-
tity up to corrections proportional to e/N and to the
dynamically generated mass function, which are both neg-
ligible. Gauge covariance can (in principle) be recovered
by applying the Landau-Khalatnikov transformation rules
to various Green's functions [13].

The inverse full fermion propagator can be written as

5' '(p) = A. (p)P' + Ao(p)rk —B.(p) —Bo(p)r. (3)
The functions A(p) and B(p) are scalar functions of the
absolute values of the momenta, and their bare values
areA, =1, Ap =O, B = m, andBp = mp. Weusethe
decomposition A = A, ~ Ap and B = B, ~ Bp, which
leads, together with the above truncation scheme, to the
following two sets of coupled integral equations:

8n d k 2B~(k)D+(q) p q
Np' (2~)' k A', (k) + B'.(k) lql

(4)

equations, but for A ) A, . we expect that there are (at
least) two solutions for both B+ and B possible, in such a
way that there is a nonzero solution for B,. An essential
difference from pure QED is that in the presence of the
CS term there is no trivial solution B (p) = 0. Because
of the explicit breaking of parity, the fermions always ac-
quire a parity odd mass term Bp, even if the explicit odd
mass term mp is zero.

Firstly, we solve the DS equation analytically after
some further approximations. Using A(p) = I + O(e)
due to the nonlocal gauge, we replace A(p) by 1, so we
get an integral equation for B only, consisting of two
terms, Eq. (5) with A (p) = 1. The first term is the same
as in pure QED3, and the essential region for this term is
the infrared [1], p, k « n So. we consider the integral
for small momenta only, expand the integration kernel in

powers of p and k, and introduce a cutoff at k = n. We
also linearize the equation by replacing the denominator
k + B2 (k) by k + B (0), which is reliable as long as
B (p) is almost constant for small momenta. In pure
QED these approximations lead to almost the same result
as the full nonlinear integral equation [14,15].

The second term, proportional to 0, can be calcu-
lated by neglecting B with respect to k in the de-
nominator and expanding the integrand in powers of
min(p, q)/max(p, q) and e. Taking into account only the
leading order terms gives in the infrared region

8o.
Io(p) = ~

N

d k 2DO(q) k q
(2~)' k2 + B'(k) lql

we + o(p) + o(e'),

and in the ultraviolet region p ) o

Io(P) = — + O(1/p ) + O(e ) .
11Au0

9p
(9)

This means that in the ultraviolet region the CS term
will dominate, since without the CS term B(p) falls off
much more rapidly in the far ultraviolet. Higher order
contributions in min(p, q)/max(p, q) will slightly change
this result, but not affect the general behavior [15].

Thus we have for p ~ n and to order 0

4B (p)=qA
k B k

dk 2
~ Ae, (10)

k2 + M~ max(p, k)

1

M 2F~(a+, a, 2; —n /M ) = ~he. (12)

where we have defined M = B (0). This integral equa-
tion can easily be solved by converting it to a second-
order differential equation with boundary conditions. The
solution is

3 2B (p) = M qF~(a~, a, ~; —p /M ),

where a = 4(1 ~ Ev 162/3 —1). The ultraviolet
boundary condition leads to the condition
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FIG. 3. The critical line for the chiral phase transition in the
(A, 8) plane.

This result should also be contrasted with some previ-
ous results in analyzing this model [8], indicating just a
minor quantitative effect on the critical coupling and scal-
ing behavior due to the CS term. Both our numerical and
analytical results reveal that the presence of an explicit
CS term changes the nature of the chiral phase transition
drastically.
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FIG. 4. The infrared values B (0) and B (0) as functions of A

for several values of 0.

B beyond some critical value A, ) A, (B = 0). Close
to the critical value B (0) does not go to zero, nor does
B,(0), signaling a first-order chiral phase transition. Also
the behavior for increasing 0 at fixed A is qualitatively the
same as our analytical result.

In conclusion, both the numerical and analytical results
show that there is a first-order chiral phase transition
in QED3 with an explicit CS term. This result is very
remarkable, given the well-known infinite order phase
transition (Miransky scaling) [1] in the absence of the CS
term. Also the other known chiral phase transitions in
four-dimensional gauge theories are of second (or higher)
order. This first-order phase transition is a new and
interesting phenomenon, and it might lead to new insights
into chiral phase transitions in general. In particular, the
connection between the CS term and the first-order phase
transition should be studied in more detail.
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