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Ab initio Force-Constant Method for Phonon Dispersions in Alkali Metals
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The force-constant matrix and the phonon dispersion curves are calculated for metals (Li, Na, K) by
the fully self-consistent direct ab initio supercell approach based on the local-density approximation and
on norm-conserving pseudopotentials. Apart from a constant scale factor for each material there is a
very good agreement between theoretical and experimental data for the dispersion curves.
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There are basically two approaches for a calculation of
phonon dispersion curves of crystalline solids from first
principles, the linear response approach and the direct
approach. In the linear response approach the dynami-
cal matrix is obtained from the modification of the elec-
tronic density resulting from the phonon displacements
of the atoms. The linear modification may be obtained,
for instance, via the inverse dielectric matrix. (For a re-
view, see Ref. [1].) The dielectric matrix is calculated
from the eigenfunctions and energy levels of the unper-
turbed system, which requires cumbersome summations
over many unoccupied conduction bands. Alternatively,
various methods have been introduced to calculate the lin-
ear modification of the density directly (i.e., not via the
dielectric matrix), either from different variants of a per-
turbation theory [2] or from a minimization of the second-
order perturbation of the total energy [3]. Via a Fourier
transformation of the dynamical matrix the force constants
can be obtained.

In the direct approach the perturbed system is treated
on the same footing as the unperturbed one, and the re-
quired information is obtained from a comparison of the
two systems. Thereby, in the so-called frozen-phonon cal-
culations [4], the total energy is evaluated for a system
with a displacement pattern according to a snapshot of
the phonon movement, and from the energy as a func-
tion of the displacement amplitude the phonon frequency
is obtained. The method is straightforward, but it is re-
stricted to wave vectors for which the phonon displace-
ment pattern is commensurate to the supercells used in
the calculations (i.e. , only short-wavelength phonons can
be considered for reasonable supercell sizes). A second
type of direct supercell calculation considers the forces
related to the displacements of the atoms in the super-
cell rather than the energies. From the forces obtained by
the use of the Hellmann-Feynman theorem (see, for in-
stance, Ref. [5]) the elements of the force-constant matrix
are calculated. Then the dynamical matrix is determined
by a Fourier transformation, and the phonon frequencies
for arbitrary wave vectors are evaluated by a diagonaliza-
tion of this matrix. By displacing entire planes of atoms
the interplanar force constants and hence the dispersion
relations for the corresponding directions in the phonon

Brillouin zone can be obtained [6]. Because the planar
force constants are linear combinations of the elements of
the force-constant matrix, the latter ones may be obtained
[7] from a limited set of planar force constants. In both
cases the set of coupling constants must be confined by
discarding interactions outside a certain spatial range, and
the convergence of the results with respect to the size of
this range must be checked.

In the present Letter the direct force constant -approach
is applied for the first time to the case of metals, namely
the alkali metals Li, Na, and K in the body-centered cu-
bic phase. These materials are often perceived as being
among the simplest nearly free electron metals (which
seems to be justified for Na and K but definitely not
for Li). Most of the phonon calculations for these sim-
ple metals (Ref. [8], and references therein) therefore in-
troduced pseudopotentials for the electron-ion interaction
and approximated the electronic response due to an atomic
displacement by the one of a homogeneous electron gas
[9]. In most of these papers the inliuence of the vari-
ous assumptions entering this type of theory (for instance,
the form of the screening function of the homogeneous
electron gas, the conduction-band —core-electron exchange
approximation and the construction of the pseudopoten-
tial) is discussed extensively. Because the results some-
times depend critically on these assumptions, a direct ab
initio approach which depends only on the form of the
exchange-correlation potential is clearly superior. The
present direct calculations are part of a project to deter-
mine the vacancy formation entropies in alkali metals (re-
lated to the modification of the phonon spectrum by the
vacancy) which certainly requires going beyond the linear
response theory.

In our calculations we considered periodically ar-
ranged supercells and displaced the basis atom ~ in
the supercell by a small displacement vector, u(sc) =
[u (~)), where the Greek index labels the Cartesian coor-
dinates. From the calculated Hellmann-Feynman forces
[5], F(~') = [F (~')), on the basis atoms a' we then can
determine one column of the force-constant matrix

aFp(~') Fp(~')
@ p(~; ~'):=—

8 (Ku) u~ (K)
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where we have adopted a harmonic approximation. Tak-
ing symmetry arguments into account, it becomes obvi-
ous that for a bcc crystal the displacement of the central
atom of the supercell, in fact, does not only allow one to
determine just one column of the force-constant matrix,
but all single elements. The only limitations are given by
the size of the supercell. First, because of the periodic
arrangement of supercells we can calculate in principle
only the couplings between the atoms in the same super-
cell. Second, even the force constants linking atoms in
the same supercell are infIuenced by the superposition of
the forces from the displaced atoms in the periodically
arranged supercells. Therefore, in order to obtain reli-
able results for those coupling constants, the supercell
size should exceed the spatial range of the forces. We
determined the couplings up to the fifth nearest neigh-
bor couplings. Of course, we cannot exclude that the
couplings, for instance, to the fourth or fifth neighbors
are affected by the above discussed superposition. To
exclude this, calculations for even larger supercells are
needed, which is beyond our present computational ca-
pability. However, we do not expect that the neglect
of couplings to further distant neighbors and the possi-
ble uncertainty for the couplings to the fourth and fifth
neighbors have an effect on the phonon spectrum for the
following two reasons: First, we repeated the calcula-
tions by setting the couplings to the fifth neighbors zero,
and there was virtually no effect on the phonon spec-
tra. Second, we performed frozen-phonon calculations
for the H point in Li, which automatically and exactly
include all the couplings up to infinity, yielding an al-
most identical result as from the dynamical matrix (see
below) obtained by use of the couplings up to the fifth
neighbor. Although we used a rather small displacement
of 6 = 0.015a (a = elementary lattice constant), the cal-
culations include slight anharmonicities, which are cor-
rected for along the lines given in Ref. [10].

The calculations were performed in local-density ap-
proximation (LDA). Nonlocal, nonlinear [11],optimally
smooth norm-conserving pseudopotentials [12] were used,
allowing a rather small energy cutoff for the plane wave
basis set. From frozen-phonon calculations at the H point

[q = (0, 0, —,)] we found that a cutoff of E, = 8.5 Ry was
sufficient which we then used in all later calculations. We
confirmed that special k point meshes with 120 k points
in the simple cubic two-atom supercell and correspond-
ing sets in the larger supercells are sufficient. The cal-
culations were performed using our theoretical values for
equilibrium lattice constants obtained in the LDA, which
are 6.34 a.u. for Li, 7.65 a.u. for Na, and 9.62 a.u. for K,
in accordance with previous LDA results [13].

From Table I it becomes obvious that the coupling
constants in real space decay much faster in Na and K
than in Li. According to the above discussion we can,
of course, not exclude that the couplings to the fourth
or fifth neighbors are affected by superposition effects.

TABLE I. The nonvanishing elements P &(0, ~') of the force-
constant matrix in Li, Na, and K.

K QP

1xx
1xy

2xx

3xx
3xy
3zz

4xx
4xy
4yy
4yz

5xx
5xy

Li (N/m)

3.001
2.709

1.046
0.408

—0.636
—0.415
—0.059

0.219
—0.049
—0.085

0.051

0.120
0.158

Na (N/m)

1.442
1.585

0.490
0.143

—0.088
—0.073

0.006

0.055
0.003
0.001
0.009

0.012
0.011

K (N/m)

0.835
0.954

0.454
0.048

—0.053
—0.041

0.000

0.025
0.005
0.004
0.000

—0.001
0.001

However, this holds for Li as well as for Na and K. The
fact that Li behaves differently from Na and K means
that either the interaction ranges are different or that the
analytical forms of the interaction as a function of the
distance are different. We think that the first assumption
is more likely. With the force-constant matrix @(K;K )
the dynamical matrix

(2)

is obtained where M is the atomic mass and R is the
position vector of the atom sc'. The diagonalization of
D(q) then yields the phonon dispersion curves tu(q) which
are represented in Figs. 1 —3 for three high-symmetry
directions in the phonon Brillouin zone.
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FIG. 1. Theoretical phonon dispersion curves (scaled at the N
point, see text) for Li. For the Brillouin zone notation, see
Ref. [15]. The open and full circles represent the results from
inelastic neutron scattering [15] at 293 K for the longitudinal
and the transverse branches.
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FIG. 2. Theoretical phonon dispersion curves (scaled at the N
point, see text) for Na. The open and full circles represent the
results from inelastic neutron scattering [16] at 90 K for the
longitudinal and the transverse branches.
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FIG. 3. Theoretical phonon dispersion curves (scaled at the
N point, see text) for K. The open and full circles represent
the results from inelastic neutron scattering [17] at 9 K for the
longitudinal and the transverse branches. The open diamonds
represent experimental data at 4.3 K [18].

In all materials the calculated phonon frequencies at the
zone boundaries were larger than the experimental phonon
frequencies. For instance, the calculated frequencies of
the longitudinal branch at the W point of Li, Na, and
K exceeded the experimental frequencies by a factor of
1.16, 1.10, and 1.05, respectively. According to the above
discussion it has been already demonstrated that this does
not result from the neglect of couplings to further distant
neighbors or a possible uncertainty for the couplings to
the fourth and fifth neighbors. To make sure that the
discrepancy to the experiment has nothing to do with
the use of pseudopotentials we have redone the frozen-

phonon calculations for the H point in Li using the full-
potential linearized-augmented-plane-wave method, again
with the same result. It must be admitted that the reason
for this discrepancy is not known. Part of the discrepancy
might arise from the fact that the lattice constants of the
alkali metals are exceptionally strongly underestimated
[13]by the local-density approximation. To demonstrate
that, apart from the discrepancy for the absolute values,
the functional form of the experimental dispersion curves
is very well reproduced by our calculations, we scaled the
theoretical data by the factors found for the longitudinal W

point frequencies and given above.
It becomes obvious from Figs. 1 —3 that there is nearly

perfect agreement between theory and experiment for Na
and especially for K. For Li, which is electronically more
complicated (see above), the agreement is still quite good.
It should especially be noted that the crossing between
the longitudinal and the transverse branch for the [00$]
direction is perfectly reproduced, as well as the plateaulike
behavior of the transverse branch in [ggg] direction. For
K there is no phonon anomaly in the low-frequency
transverse branch along the [Ogg], in disagreement with
the theory of Dagens et al. [8] but in line with the
experimental data of Dolling and Meyer [18] at T =
4.3 K.

The authors are indebted to H. Krimmel for performing
the full-potential linearized-augmented-plane-wave calcu-
lation for the H point in Li.
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