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Spin Stiffness of Mesoscopic Quantum Antiferromagnets
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We study the spin stiffness of a one-dimensional quantum antiferromagnet in the whole range of
system sizes L and temperatures T. We show that for integer and half-odd integer spin cases the
stiffness differs fundamentally in its I. and T dependences, and that in the latter case the stiffness
exhibits a striking dependence on the parity of the number of sites. Integer spin chains are treated
in terms of the nonlinear sigma model, while half-odd integer spin chains are discussed in a
renormalization group approach leading to a Luttinger liquid with Aharonov-Bohm —type boundary
conditions.
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Quantum one-dimensional antiferromagnets have been
the subject of intensive studies since Haldane [1] conjec-
tured that the spectrum of an integer spin S chain has a
finite gap even in the absence of any anisotropy, while
half-odd integer S chains are gapless. In both cases the
Neel long-range order of the ground state is destroyed by
quantum fluctuations. However, the "degree of destruc-
tion' is different: For integer S the correlation length is
finite, which means that the elementary excitations have a
gap, while for half-odd integer S the correlation length is
infinite and excitations are gapless. By now, the presence
of the Haldane gap for integer S chains is well understood
theoretically [2] and has been confirmed in experimental
[3] and numerical [4] studies. However, all these investi-
gations were concentrated on the Haldane gap, i.e., on the
energy spectrum itself. Thus a broader understanding of
the Haldane conjecture is desirable, and the question natu-
rally arises whether there are alternative manifestations of
the fundamental difference between integer and half-odd
integer spin chains. Indeed, it is the purpose of this work
to provide an affirmative answer to this question and to
discuss such a particular case in terms of the so-called
spin stiffness.

Quite recently, there has been much interest in the spin
stiffness (helicity modulus) p, of classical Heisenberg fer-
romagnets [5—7]. p, is defined as a change in the free en-

ergy F of the magnet when a twist is applied to the spins
at the sample boundaries. When thermal fluctuations are
taken into account, p, is being renormalized with respect
to its bare value and depends on the scale at which it is
probed. Chakravarty [5] has recently shown that p, ex-
hibits features which are familiar from the behavior of the
electrical conductance of a metal in the weak localization
regime [8]. For instance, in 2D, the mean value of p,
depends logarithmically on the sample size I., while the
rms value of its fluctuations is universal [9]. This simi-
larity [10] makes the spin stiffness an equal member of
the family of traditionally mesoscopic quantities such as a
conductance or a persistent current. Also, the stiffness p,
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where g = 2/S, v, = 2SJ„ap is the spin wave velocity
(we set ktt = It = 1), ap is the lattice constant, L = apN,
Lr = Pv, is the wavelength of the the'rmal magnons,
and n is the slow-varying component of the (staggered)
magnetization satisfying the constraint n2 = 1. On the
edges of the space-time domain L x I.T the boundary
conditions are periodic in xp, i.e., n(0, x) = n(Lr, x), and
correspond to a fixed twist of the n field applied in

serves as a useful (though not perfect) tool for character-
izing magnetic long-range order; in particular, a vanishing
value of p, indicates absence of order [11].

Our goal here is to study p, of a quantum one-
dimensional antiferromagnet, where fluctuations are (i)
quantum and (ii) topologically distinct for integer and
half-odd integer S. We shall see that the behavior of p, is,
indeed, quite different for integer and half-odd integer S:
p, is renormalized with L in the former case (as it is for a
classical 2D ferromagnet), whereas it is L independent (in
leading order) in the latter. Moreover, for half-odd integer
S, p, is shown to exhibit a striking dependence on the
parity of the total number N of spins. These results should
be amenable to a direct check in numerical simulations
(see, e.g. , Refs. [7,12]) and, in particular, could be tested
experimentally by measuring the stiffness of quasi-one-
dimensional antiferromagnets of finite size using similar
materials as in Ref. [3].

We start with the Heisenberg Hamiltonian for a spin
chain with nearest-neighbor interactions

N

H = J,„gS(n)S(n + 1), (1)
n=1

where J„)0, and we consider the integer S case first.
In this case, the long-wavelength limit of the partition
function Z becomes the (1 + 1)D nonlinear o. model
(NLo. M) [13] with Z = f X)n B(n2 —1) exp( —A.), and
the Euclidean action is given by
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the x direction, i.e., n(xo, 0) = (1,0, 0) and n(xo, L) =
(cos 0, sin 8, 0), where 0 is the twist angle. It is convenient
to use the transformation [5,6, 14] n = R(8(x))o., where
R is the rotation matrix about the g axis by the angle
8(x) = Hx/L, and cr satisfies the boundary conditions
0 ) 1 and 0-2 3

= 0, at x = 0, L. The action then takes
the form

$p2
'U 2

S

for (a),

for b and c,
(7)

where g(x) is the Riemann g function. Contrary to the
case of a classical ferromagnet [5], the fluctuations are

0+ 2 —(o )ii, a2 —o28 cr)) . (3)

We define the spin stiffness p, in units of the velocity
8 F
gg2 (4)

0=0
where F = T ln Z [—15]. With this definition, the bare
value of p, in the tree (classical) approximation is
po = v, /2g. Corrections due to quantum and thermal
fluctuations can be found in a loop expansion in g. In
one-loop order, only quadratic terms in the action (3) are
to be retained, and the third term in Eq. (3) reduces to
a total derivative 8 o.2, and, thus, vanishes as we shall
restrict our consideration to the topological sector with
zero winding number (Pontryagin index). Performing the
functional integration, we get

g
ps = ps (5)LLr q2j'

where q = (27m/Lr, 7rm/L), n = 0, ~1, . . . ,

m = 1, 2, . . . . The sum in Eq. (5) can be evaluated
in three limiting cases: (a) L « Lr (quantum region),
(b) ao « Lr « L (classical renormalized region), and
(c) Lr « ao (classical region). We have

ln (g /L) /4~, for (a),—= - [g(T) —L]/12Lr, for (b), (6)
- (s.l

—L)/12LT, «» (c)
Here, g„= naoexp(7rS) is the correlation length in
the quantum region. g(T) = 3Lr In(ygq /Lr)/vr is the
classical correlation length g, ~

= 6Lr/g renormalized by
quantum fluctuations. u and y are (cutoff dependent)
nonuniversal constants of order one. We note that case
(c) agrees with the 1D classical NLo. M [5].

In all the regions, p, goes to zero as the system
size L & g approaches the correlation length of the
corresponding region [16]. This zero value of p, is what
a macroscopic system is expected to have in the absence
of spontaneously broken symmetry [11](the point p, = 0
signals the breakdown of the one-loop order expansion).

The rms fluctuation 6 p2 = (TL8/BO ) ln Z~ii=o is
given by

nonuniversal: they depend on both L and T. Moreover,
in the classical and classical renormalized regions, the
fluctuations are abnormally large (Bp, ) p, ), and, thus,
the spin stiffness is not a self-averaging quantity. Finally,
we note that the analogs of the regions we consider in the
quantum NLo M can also be obtained in the classical 2D
model, if one considers a rectangular instead of a square
system.

We now turn to the half-odd integer spin case.
The effective field-theoretical description of the long-
wavelength excitations is not of much use here, since the
partition function contains a 0 term and contributions
from all topological sectors with different winding num-
bers [1,2, 13], which makes the model hardly tractable.
It is believed that the exactly solvable case of the spin
1/2 chain reproduces the generic features of all half-odd
integer S chains [1,2, 13], and we shall consider this case
only. By using the Jordan-Wigner transformation [17]

( n —i

P(n) = (—1)"exp i rr g[S,(j) + z) ~S (n), (8)')
where S = S, ~ iSY, the Hamiltonian (1) is mapped on
to a system of spinless fermions on the lattice,

N

H = J g[—-{Pf(n)P(n + 1) + H.c.}
n=1

+:p(n):: p(n + 1}:], (9)
where: p(n):= i/if(n)P(n) —1/2 is the (Fermi-ordered)
density operator. We now have to specify the boundary
condition for the fermionic operators i/i. The quantum
generalization of the classical boundary conditions for the
spin field n, used in the NLo-M treatment of the integer 5
case, is S (N + 1) = e-'OS (1) and S,(N + 1) = S,(1).
The boundary condition for i/i then follows from Eq. (8),

P(N + 1) ei(m(NF+N) 0]iii(1)— (1o)
where the number of fermions is NF = N/2, if N is
even, and NF = (N + 1)/2, if N is odd. We have also
used the fact that QS, (n) = 0 (1/2) for even (odd) N.
The problem defined by Eqs. (9) and (10) is similar
to that of spinless electrons on a ring threaded by an
Aharonov-Bohm flux 0, with the difference that here the
boundary conditions depend on the parity of N. This
parity dependence will result in a striking difference in
the behavior of p, for even and odd N.

Finite-size systems of interacting fermions with twisted
boundary conditions have recently been studied in the
framework of the Luttinger liquid approach [18]. The
parity dependence of the boundary conditions, however,
requires a reexamination of the bosonization scheme,
which we now address. The left and right movers are
introduced by P(n} = e'""'P+(n) + e '""'P (n), where
we choose kF = vr/2 for N even and odd. The boundary
conditions for P, where ix = ~, take the form

e '~ii'I (1), for N even,
—nie '~P (1), for N odd.
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d'x[Ko(~~y)2 + (i/I. )W~~o~oy

—(gp/a()) cos(4~~@)), (14)

where p =,(1 + 4/ )'/2, Kp = p/2 „gp =
I/8m Kp, and Oo = ~J —0/7r The bos.onic fields
have been decompactified . in the course of the
functional integral derivation, and P obeys now
the boundary conditions @(xp + kpP vp, x + ki L) =
$(xp, x) + kp~vrn + ki ~sr(2m + ~M), where n and
m are the winding numbers in xo and x directions,
respectively. The measure D@ of the functional inte-
gral Z = J'Dgexp( —A(, ) includes the sums over the
winding numbers n, m and over the topological indices

The last term in Eq. (14) corresponds to umklapp
scattering processes between fermions. Since gp/Kp is
small (=0.02), this umklapp term can be treated perturba-
tively in a standard renormalization group (RG) approach
leading to the following liow equations [20]:

dg
dl

= 2(K —1)g,

dK

g(o) = go,
(15)

K(0) = K(),277 gdl
where l = In(X /ap) with L = min [L, Lr]. Since we
started with the isotropic Heisenberg model (1), the
scaling dimension of the umklapp term is equal to the

Bosonic fields are introduced by (lr = (2vrao) '/~e'~&,
where (b = a/ —8, and B,6 is the conjugate momen-
tum of P. The zero modes of P and 8 can be chosen in

the form [18]

@p = @J/@Fr + M~vrx/L,

e, = a /~~ + (J —e/~)t~(x + ,L)/L—,

where J and M are the operators of the topological current
and the number of particles above the ground state [19],
respectively, which satisfy [t/J, J] = [BM, M] = i N. ext,
using the Baker-Hausdorff formula, we write

i ~sr p p i (vr/L)[o. x(M —()—J(x+ L/2)] (13)
where P contains contributions from the nonzero modes
and from PJ and 6M and is not parity dependent; J(M)
stands for the eigenvalue of J(M). It is convenient to
introduce the topological indices KJ and KM, such that
KJ = 0 (1), if J is even (odd); for even N, ~M = 0 (1), if
M is even (odd), and, for odd N, ~M = 0 (1), if M + 1/2
is even (odd). By using Eqs. (11) and (13), we see
that scJ M must satisfy the following constraints: KJ = 1,
xM = 0 (and vice versa), if N is even, and ~J = ~M,
if N is odd. By comparing these constraints with the
analogous constraints of the fermionic problem [18], we
can now say that the ground state of our spin system is
paramagnetic for N even and diamagnetic for N odd.

The rest of the bosonization procedure is identical to
that of Ref. [18],and the bosonized Euclidean action takes
the sine-Gordon form

Z() —— P e "e3(zj, e )03(zM, e '"),
KJ,KM

(17)

where Oq(z, q) = g q" e2'"' is the Jacobi 0 function, zj =
~0o/2, a = 7rK'L/Lr, b = m K*Lr/L, zM = 2i~Mb, and
Lr = Pv*. The results for the spin stiffness take simple
forms in the limiting cases of low and high temperatures.
For L « Lr, we obtain from (4) and (17)

(v*/8K" 2)—Lr/L, for N even,
v "/47rK*, for N odd,

while for L )) L& we get

(18)

(19)

where g = K' + 1/4K'. To obtain the value of p, away
from the fixed point, we go back to the full action (14)
and replace (Kp, gp) by (K, g) from Eq. (16), treating the
deviations from the Axed-point values as perturbations
[21,23,24]. In first order, the umklapp term gives no
contribution, while the perturbation in K —K leads to

1 + I/n)v ln(L/Lp), for L « Lr,
exp[3Lvr/8Lr ln(Tp/T)], for L » Lr,

(20)

where a~ = 1 for even N, and a~ = 2 for odd N; the
cutoff Tp is of the order of v*/Lp. The last equation
is valid for T ~ T* & Tp, where Lr(T') = ap. The L
and T-dependent corrections to p,

' resulting from the
perturbation of the fixed-point action by the marginally
irrelevant operator are larger than those coming from the
expansion of Eq. (17) in (L/Lr) at the fixed point-.
In particular, the exponential dependence of p,*, on K'
in the high-temperature regime results in a significant
T-dependent renormalization. This renormalization may
be conjectured to remain significant in the intermediate
regime L = L& as well. We also note that the umklapp
processes lead to the breakdown of the single-parameter

critical dimension of the model (= 2), i.e. , this term is
marginally relevant. In this case, the How proceeds along
the separatrix between massive and massless phase. On
this line [21], the solutions to Eqs. (15) are with L » Lp

1 K" —KK=K'-
(5/ )

g= (16)

where K* = K(~) is the fixed-point value, and the
(nonuniversal) cutoff Lp depends on (Kp, gp) and is of
the order ap. At the fixed point (5 ~), g = 0 and
the action (14) renormalizes to that of a Luttinger liquid
with a topological term (~ Bog), and with parameters
renormalized through interactions: (Kp, vp) ~ (K', v').
By comparing with the exact Bethe-ansatz solution [22],
one gets K* = 1 and v* = harv, /2.

We can now calculate the Axed-point value of the spin
stiffness, p, , and its finite size and finite temperature
corrections. Upon integrating out the zero modes, the
twist-dependent part of Z becomes
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scaling of p, : The latter scales with L/Lr at the fixed
point but acquires additional L/Lo and T/To scalings
away from the fixed point (for a rough estimate, Ltr ——

ao, and To ——J,„). This breakdown can be detected in
numerical and real experiments. The fluctuations in p,
can be calculated along the same lines as for p, itself,
and, in marked contrast to the integer 5 case, turn out to
be exponentially small for all L/Lr.

The negative value of p, for even W simply reflects the
fact that in this case the free energy has a maximum at
0 = 0, and an arbitrarily small twist drives the system
out of this state. Analyzing p, at finite 0 (and low
temperatures) we can see that p, vanishes at some
O' = L/Lr « 1 and then remains positive for all 0,
thus exhibiting a crossover from the paramagnetic to
the diamagnetic regime. The parity effects in the spin
stiffness are quite similar to that in persistent currents
of electronic systems [18,25,26]; in particular, the result
obtained above can be checked without approximations
for the special case of the XY mode1 by mapping it on to
the exactly solvable problem of free fermions [27).
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