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Morphology of Nested Fullerenes
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We introduce a continuum model which shows that dislocations andlor grain boundaries are intrinsic
features of nested fullerenes whose thickness exceeds a critical value to relieve the large inherent strains
in these structures. The ratio of the thickness to the radius of the nested fullerenes is determined by the
ratio of the surface to curvature and dislocation (or grain boundary) energies. Confirming experimental
evidence is presented for nested fullerenes with small thicknesses and with spherosymmetric shapes.

PACS numbers: 61.46.+w, 61.50.Jr, 61.72.—y

Recent experimental and theoretical work [1—3] sug-
gest that carbon-based, nested fullerenes (also known as
onion skin, multilayered, or Russian doll fullerenes) are
more stable than single shell fullerenes when the num-
ber of carbon atoms exceeds a critical size N, (N, ~ .103

[2,3]). Nested fullerenelike structures have also been ob-
served in several layered metal dichalcogenides [4] MX2,
where M = W, Mo and X = S, Se. In the present Let-
ter, we employ a continuum elastic theory to demon-
strate that either dislocations or grain boundaries are an
intrinsic component of thick walled, nested fullerenes.
We present experimental evidence, consistent with this
picture, which shows that nested fullerenes with small
thickness show a spherosymmetric shape while thick,
nested fullerenes show either faceted or nonfaceted shapes
associated with grain boundary or dislocation relaxed
structures.

The importance of dislocations can be seen by consider-
ing a two-shell, spherical graphitic fullerene where geom-
etry dictates that the outer shell contains more atoms than
the inner shell. These two shells cannot pack together per-
fectly like the (0002) planes in graphite. While locally the
layer packing may be similar to graphite, the regions of
good lattice match must be separated by discommensura-
tions or, equivalently, dislocations. Hence any discussion
of the energetics must include these geometrically neces-
sary defects. While atomistic methods [2,3,5 —10] have
proven useful in determining the energetics of competing
fullerene structures, such approaches are less useful for
nested structures with large numbers of atoms [1], where
our continuum approach is most applicable.

The energy of a nested fullerene has three main
components: the curvature or bending elastic energy, the
defect energy, and the surface energy. The elastic energy
W, associated with bending a defect-free film of thickness
d about two orthogonal axes is [11,12]

12
(2kH + kK),

where H = (~i + ~2)/2 is the mean curvature, K = sc~ K2

is the Gaussian curvature, and ~l and ~2 are the two
principle curvatures. The bending moduli k and k are

functions of the elastic constants, C;, of the material:
k = Cii —Ci3/C33 = E/(1 —o)is -a measure of the
resistance of the system to bending with a nonzero
mean curvature, while the saddle-splay modulus k =
—2C66 = E/(—1 + o.) is a measure of the energy cost
for making saddle-type structures. These anisotropic
elastic expressions for k and k are given for the case
of hexagonal symmetry, where the c axis is normal
to the film surface [11,13]. E and o. are isotropic
elastic constants —Young's modulus and Poisson ratio,
respectively. For a sphere of radius R = 1/~ (R is the
distance from the center to the middle of the spherical
shell), this reduces to W„=~d3~ /12, where g = 2k +
k. This expression assumes that the whole thin film
bends coherently. However, if the atomic planes can slip
without resistance, the elastic energy is relaxed to W„=
gdc ~ /12, where c is the spacing between atomic layers.
This energy is simply the energy W, to independently
bend d/c layers of thickness c.

When the crystal planes in a thin film slip relative
to each other, the crystal structure is disrupted. When
this slippage is localized in the form of dislocations,
rather than continuously distributed, the crystal struc-
ture is disrupted less and this slippage is energetically
less costly. In a thin film geometry, the energy of a
dislocation (per unit length) may be approximated as
W~ = (Jb2/4n) ln(Ro/ro), where b is the Burgers vector
(strength) of the dislocation, and ro is the (atomic scale)
inner cutoff radius. For simplicity, we shall set b = c, the
atomic size. The outer cutoff radius Rp is approximately
equal to half the spacing between dislocations or the film
thickness, whichever is smaller. J = E/[2(1 —o.2)] in an
isotropic solid and J = (C»C55)'I in a layered material
[13,14]. This dislocation energy omits the relatively small
contribution of dislocation [14] and disclination (see be-
low) [5] cores at large system sizes.

The total elastic energy Fb associated with bending a
thin film into a spherical shell of thickness d and radius
R = 1/~, includes both the bending energy and the dis-
location energy. We define the dimensionless thickness
h = d/c, radius r = R/c, and v = V/c3. The volume of
the thin spherical shell is V = 4~R d. Minimizing this
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energy with respect to dislocation density yields [13,15]

Bph3, K + Kc~

B)h + B2gvh —B3v/h, K ) Kq,
(2)

Equation (3) suggests that the equilibrium thickness to
radius ratio of nested fullerenes should decrease slowly
with an increasing number of atoms when K ( K„i.e.,
small curvature and/or thickness. On the other hand,

where Bo = vrgc3/3, Bi = Bo B2 = BoPJ/(X~~/~).
B3 = Bo(PJ) /(4~y ), n = 1 —1/h, and P =
[3/(vr n)] ln(Ro/ro), and the critical curvature is de-
fined by ~, = P J/(yh c) [13]. In the derivation of
Eq. (2), we assumed that although the shell is thin
compared to the radius h/r « 1, it is thick compared
to an atomic spacing h» 1, and terms of higher order
than linear in h/r are neglected. For ~ ( ~„the total
elastic energies of nested fullerenes are lower when they
are bent coherently (without dislocations). However,
for K & K„the elastic energy is lowered by forming a
dislocation array of constant density. Therefore, a phase
transition between undislocated and dislocated, nested
fullerenes occur at a finite, critical curvature K„which
is dependent on the elastic constant of the material and
is inversely proportional to the square of the thickness.
For a fixed curvature, one can think of a critical thickness
below which the layers bend with no dislocations and
above which the structure contains dislocations. The
theory shows that thin, nested fullerenes have high critical
curvatures and one might expect them to grow relatively
dislocation free. The same analysis and conclusions ap-

ply to the formation of grain boundaries or polygonalized
morphologies; dislocations tend to organize themselves
into grain boundaries and theory [13] predicts that thin,
nested fullerenes would tend to be grain boundary free
and show spherically symmetric morphologies.

In addition to the bulk terms, the total energy of
a nested fullerene also includes contributions from the
inner and outer surfaces of the spherical shell. In all
known nested fullerenes, the bonding within the atomic
layers (i.e., the basal planes) is covalent, while that
between layers is primarily due to van der Waals forces.
Therefore, the surface energy can be written F, = Sv/h,
where S = 2yc and y is the surface energy (per unit
area) of a semi-infinite solid of the film material and
related to the van der Waals energies.

The total energy of the nested fullerene is E„,= E, +
Eb. The equilibrium nested fullerene thickness may be
obtained by minimizing E„,with respect to h at fixed
v. The balance between the h3 and 1/h terms determine
the equilibrium aspect ratio g = h/r = d/R for ~ ( ~, .
The large v limit, the competition between the terms
proportional to h'/2 and 1/h determine q,q, when ~ ) ~, .
For large v, the equilibrium aspect ratio g,q is

(2~sr/3 / )(S'/Bov)'/ ~ ( a, ,

(4~~) (S/B2), ~ ~ sc, ,

when ~ ) ~, (large curvature and/or thickness), r/,
„

is
constant to leading order in v, and is determined by the
surface energy to relaxed bending energy ratio.

The equilibrium shape of nested fullerenes predicted by
Eq. (3) is evaluated using the accurately known elastic
constants [16] of graphite; the uncertainty in the (0001)
surface energy is of the order of 50% [17]. In MoS2, the
elastic constants are also known [18], but the uncertainty
in the (0001) surface energy is of the order of a factor
of 10 [19,20]. Using the available data, we estimate that
the equilibrium aspect ratio is p = 0.06 for the graphitic,
nested fullerene and g = 0.1 for MoS2, assuming that
K ) K . The qualitative message is that equilibrium large
scale fullerenes should be "thin, " i.e., they should have a
small thickness to radius ratio.

Similar considerations can be used to analyze the
energies of polygonalized, nested fullerenes, where the
polygonalization is treated in terms of grain boundaries.
Speck [21] was the first to compare the energetic's
spherical and faceted carbon layers in a study of carbon
blacks, but did not consider the important effects of
dislocations or anisotropy or determine the equilibrium
value of q which are included in the present analysis. The
energy associated with the grain boundaries in a nested
fullerene is equal to the grain boundary energy per unit
area ygb times the total grain boundary area. The grain
boundary area is proportional to h and the total length of
all edges, which is proportional to R. The proportionality
constant g depends on the type of polyhedron and
typically decreases slowly with an increasing number of
faces for fixed volume. The total energy of a faceted,
nested fullerene has contributions from both the grain
boundary energy (Fsb = ysbhR$) and the energies of the
inner and outer surfaces. Following the same procedure
used to determine the total energy of dislocated, nested
fullerenes, we find Et, &

= Ggvh + Sv/h for ~ ) ~s,gb

where G = gysb c /$4~ and res" are the critical curvature
for forming grain boundaries. In isotropic materials,
Ks ( ~, [13]. For sc ( ~s, the energy is as given in

Eq. (2). E&,& exhibits a minimum at r/sb = h/r = d/R =
4~~S/G. Therefore, gsb is independent of the number
of atoms v in the large v limit and is determined by the
ratio of the surface to the relaxed bending energies.

Comparison of gg„with g,q, shows that the g, q for the
two relaxation mechanisms are both independent of v and
proportional to the surface energy S. The ratio r/s„"/r/, q

=
[2cJ In(Ro/ro)]/(s ysba) is approximately 5 for graphite.
The uncertainty in this value of gg„ is of the same or-
der as that for p,q, owing to the uncertainty in the grain
boundary energy. This value of the ratio is based upon
the assumption that the polyhedral, nested fullerene is
icosahedral such that g = 20, J = 6.5 X 10'o Pa, ysb =
1 J/m2, n = 1, c = 2 X 10 'o m, and ln(Ro/ro) = 5. In
any case, we expect that g,„)g«, since the disloca-
tion energy is typically lowered when they organize into
grain boundaries. This would also suggest that polyhedral
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(faceted), nested fullerenes should have lower energy than
those relaxed by dislocations (for the same v). However,
since there are no topological constraints on the number of
grain boundaries and the grain boundary energy changes
rapidly with misorientation at small angles, it is possible
for dislocation relaxation to lead to lower energy struc-
tures as compared with structures with many low-angle
grain boundaries. The rearrangement of dislocations into
a relatively small number of high misorientation grain
boundaries may be limited by kinetics.

One obvious difficulty in experimentally determining g
is the necessity to distinguish between shapes determined
by growth and/or kinetic factors and true equilibrium
shapes. Clearly, if the nested fullerenes grow in a layer-
by-layer mode, then it is unlikely that the resultant
structures are in equilibrium. Carbon, nested fullerenes
are typically found to have interior radii very close to
that of C60, while the outer radii vary over a substantial
range [22]. Nested fullerenes of MoS&, on the other hand,
can show a wide range of both inner and outer radii
(see Fig. 1). Typical MoSz, nested fullerene, produced
from the sulfidation of a very thin film of metal oxide
on a quartz substrate, is shown in the atomic resolution
electron micrograph in Figs. 1(a) and 1(b). Examination
of the nearly spherical, nested fullerene in Fig. 1(a) shows
that such structures may be described in terms of a
relatively large number of low-angle grain boundaries
or by a uniform array of dislocations. The fullerene in
Fig. 1(b) is strongly faceted, with very liat atomic planes
meeting at sharply defined grain boundaries. We note that
both of these samples are grown under conditions which
are far from equilibrium and comparison with the theory
is not possible.

Recently, however, a new technique for the gas phase
synthesis of MoS2, nested fullerenes has been developed
[23,24]. In this technique, which affords a much better
control over the growth conditions than the previous
gas-solid synthetic route [4], gaseous Mo03, and H2S
gases diluted in a carrier gas are reacted at elevated
temperatures ()800 'C). It is expected that, in this
synthetic route, the nested fullerenes grow independently
of each other, mostly through interaction with the carrier
(forming) gas and hence growth conditions which are
closer to equilibrium prevail. Copious amounts of the
nested fullerene and nanotube phases are obtained in
this way.

It appears that even in this synthesis the role of the
substrate, on which the nested fullerenes are being col-
lected, cannot be overlooked [23,24]. If a NbS2 substrate
is used, large amounts of nested fullerenes consisting of
two shells and of various shapes are observed. A typ-
ical example of a nested fullerene with g = 0.2 and a
nearly spherical shape is shown in Fig. 1(c). Most of
the nested fullerenes produced in this way exhibit val-
ues of g ~ 0.2, the majority of these are at least partially
faceted —containing at least one grain boundary. In other
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FIG. 1. High resolution transmission electron microscope
image of MoS2 fullerenes. The distance between the fringes
is 0.62 nm, which is half of the c-axis lattice constant in
hexagonal MoS2. (a) and (b) show nested MoS2 fullerenes
prepared by firing a 10 nm film of MoO 3 in H 2S under
reducing conditions (see [4] for more details) with (a) a
nearly spherical shape and (b) a polyhedral, faceted shape,
respectively. (c) shows a nearly spherical, two-layer, nested
fullerene produced in a gas phase reaction between a stream of
gaseous molybdenum suboxide and H2S diluted in a carrier gas
of H2/N2 (5%/95%).
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cases, where amorphous carbon has been used as a sub-
strate, single-layer nonfaceted fullerenes with a sphero-
symmetric shape were recently obtained [24]. In another
reactor of different design with a quartz substrate as a
collector [23], values of g closer to 0.7 were typically
obtained. It is very likely that under the harsh flow
conditions in this reactor, the lighter, nested fullerenes
(with g = 0.1 —0.2) are swept away by the gas How and
are collected on some other parts of the reactor farther
upstream from the substrate. Thus, although a conclusive
comparison between theory and experiment cannot be
made at this time, we now have experimental evidence
that large quantities of nested fullerenes with g as small as
0.1 do occur. These experimental results are in agreement
with our theoretical predictions presented above.

The HRTEM micrographs were prepared in collabo-
ration with Dr. J.L. Hutchinson and Dr. L. Margulis.
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