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Shear Alignment and Instability of Smectie Phases
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We consider the shear flow of well-aligned one-component smectic phases, such as thermotropic
smectics and lamellar diblock copolymers, below the critical region. We show that, as a result of
thermal fluctuations of the layers, parallel (c) alignment is generically unstable and perpendicular (a)
alignment is stable against long-wavelength undulations. We also find, surprisingly, that both a and c
alignments are stable for a narrow window of values for the anisotropic viscosity.

PACS numbers: 61.30.Gd, 47.20.Hw, 83.70.Hq, 83.70.Jr

In the presence of simple shear flow, smectic phases ex-
hibit a surprising degree of complexity. As shear rate and
temperature are changed, a variety of transitions in ori-
entation and morphology have been observed. Although
one might expect the liquid layers to simply slide over
each other with their normals parallel to the shear gradi-
ent, the c orientation (Fig. 1), they often orient with their
layer normals pointing in the vorticity (or neutral) direc-
tion, the a orientation (Fig. 1). This behavior is seen un-
der some conditions in both thermotropic smectics [1—4]
and lamellar phases of diblock copolymers [5—9]. For
thermotropics near the nematic-smectic transition, it has
been shown that, as a result of nematic fluctuations, a
alignment is favored over c [2]. In diblock copolymers,
it has been shown that the wave vector dependence of
the quartic coupling in the Hamiltonian describing the
order-disorder transition favors a alignment [10]. In this
paper we consider the steady shear flow of generic one-
component smectic phases at temperatures well below the
critical regime. We show that well-aligned (i.e., defect
free) systems favor the a orientation: the c orientation, as
well as orientations intermediate between a and c, suffer
an instability from long-wavelength undulations. We also
find, surprisingly, that within a small window of values
for the anisotropic viscosity, both a and c alignments are
stable.

It is clear that smectic phases will align so that the
average How velocity has no component along the layer
normals. Otherwise, the layers will be forced to devi-
ate from their preferred spacing, which is energetically
costly. For perfectly Oat layers, both a and c orientations
permit steady shear flows with the layer displacement un-
perturbed from its equilibrium value. However, thermal
fluctuations of the layers are convected differently in the
two cases. As we will see below, convection leads to a
greater suppression of thermal fluctuations in the c orien-
tation than in the a orientation. Hence, if we adopt a naive
picture in which the steady-state dynamics is determined
by maximizing layer Iluctuations (free energy minimiza-
tion), the a orientation will be obtained in steady state.
Since entropy maximization arguments in nonequilibrium
systems are often suspect, we also compute the dynamic

c orientation

a orientation intermediate

z~„

FIG. 1. Schematic of the c, a, and intermediate orientations.
We always take the How velocity to be in the x direction and
the layer normals to point in the z direction. The shear plane
is in the plane of the page.

response function for small perturbations away from an
aligned state and show that the c orientation is indeed un-
stable towards rotation to a.

Well below the ordering transition, where the ampli-
tude of the order parameter (concentration variations for
diblocks or density variations for thermotropics) is fixed,
a well-aligned smectic is parametrized by a layer displace-
ment u(r). We take the average layer normals parallel to
z. The Hamiltonian for layer fiuctuations is (in Fourier
space) [11]

1
d'q u( —q) u(q) ~u (q),

2

cu(q) = Bq, + Kq~,

where B and K are, respectively, the layer compression
and bending moduli and q& denotes the component of the
wave vector q in the (x, y) plane. The penetration length
A =—QIC/B is typically of the order of the layer spacing.
As a result, modes with q, = 0, which correspond to layer
undulations, are much softer than layer compressions,
which have q+ = 0.

Consider now the effect of a steady shear with average
How velocity parallel to x
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v(r) = (r n)yx, (2) reduces to the relaxational form

q(t) = q
—nyq, t. (3)

In the a orientation, the g component of q is unaffected
by the shear, q, (t) = q, ; a mode that is a pure undula-
tion (q, = 0) at t = 0 remains a pure undulation at later
times. In the c orientation, however, q, (t) = yq, t; un-
dulations with q 4 0 at t = 0 pick up a compressional
character (q, 4 0) at later times. We will see below that
the lifetime for a fluctuation with wave vector q is given
by I/~(q)P(q), where P(q) is a kinetic coefficient. As
noted above, layer compressions are much stiffer than un-
dulations, i.e. , for fixed ~q~, co(q) is larger for compres-
sion modes than for undulations. Therefore, the lifetime of
modes with q 4 0 is much shorter in the c orientation than
in the a orientation. (Here we assume an isotropic kinetic
coefficient for simplicity. ) With a greater suppression of
modes in case c, we expect a corresponding increase in the
"free energy" and hence an instability towards rotation to
a. (It is easy to see that orientations intermediate between
a and c suffer from a similar suppression of modes, though
to a lesser extent, and thus the free energy should mono-
tonically decrease in passing from c to a.)

In the previous discussion we have invoked free-energy
minimization in a nonequilibrium system. One can often
determine the steady-state behavior in such cases by mini-
mization of a quasifree energy. However, this usually re-
quires that the equations of motion can be written in the
relaxational form @ = 61 /6@, where @ is the dynamical
variable of interest and I (P) is some functional. In our
case, one can consider the equation of motion for the an-

gle 0 parametrizing orientations between a and c (Fig. 1)
after averaging over layer fluctuations. Unfortunately, we
have not been able to express the equations of motion in
a form that would justify a minimization principle. How-
ever, the above picture suggests an alternative course. A
long-wavelength undulation in the y direction locally looks
like a change in 0, i.e., a tilt of the layers in the neutral di-
rection. Therefore, a local driving force for rotating from
c to a should appear in the c orientation as an instability
towards long-wavelength undulations with q ~~ y.

Below, we first compute a quasifree energy to demon-
strate the mode suppression described above. We then
compute the dynamic response function (to one loop in
perturbation theory) and show that indeed the c orienta-
tion, as well as orientations intermediate between a and c,
are unstable and the a orientation is stable.

To describe the hydrodynamics of smectics, we follow
the treatment of [11,12]. We neglect inertial terms and
assume incompressibility. In this limit, the dynamics of u

n = cosOz + singly.

The velocity gradient direction is n, in the a orientation
n = y and in the c direction n = z (Fig. 1). A mode with
wave vector q at time t = 0 will be convected by the flow
Eq. (2) according to

au(q) 6 A'
at

=0,
2

P(q) = b„+
r]q4 + g'q2q&

g and q are viscosities [13], and b~ is the permeation
constant. Although our results are independent of b„,
we include permeation in order to ensure that subsequent
expressions converge for large q, .

In the presence of steady shear, the time derivative in
Eq. (4) is replaced by the convective derivative 8/Bt-
yq 8/Bq„q„—= q . n. In order to take into account ther-
mal fiuctuations, we add to the right hand side of Eq. (4) a
random noise g(q, t) with correlations that ensure for zero
shear rate the system relaxes to equilibrium [14]. We thus
have

g(q) —= (u(q, 0)u( —q, 0)) = k8T dt 2P(q(t))

x exp —2 dt' p(q(t')) cu(q(t')) . (8)

Similar expressions are found in [15—18].
Since the equation of motion Eq. (6) is linear,

determines the probability distribution of u. We thus
define a free energy density by

kHT

2
d'q In~(q) . (9)

Equation (9) is a complicated function of y and 0,
however, we can extract the leading asymptotic behavior
as y ~ 0, where y —= yet/B. For thermotropics, with
typical values of B = 10s ergs/cm and 71 = 1 P [11],
small y implies shear rates y ( 10~ s ', which easily
encompass the range studied experimentally. For block
copolymers, however, 8 can be much smaller and g much
larger by many orders of magnitude. For example, for
B = 10 ergs/cm [19] and g = 106 P [5] we must take( 1 s '. We find for small y

X = S'I-'=o + c~ (ycosO) +, (10)
a~T . 4],

y= A3

where c~ = 0.25 is a constant determined numerically.
will therefore be minimized for 0 = m/2, which is the a
orientation.

While the above analysis is intuitively appealing in its
treatment of thermal fluctuations, as we have discussed in
the introduction, it is not well justified. We therefore turn
to a computation of the dynamic response function.

u(q) + p(q)~(q)u(q) = C(q, t), (6)
Bq„j

(g(q, t) g( q, 0)) =—2k' T P (q) 8 (t),
where k~ is Boltzmann's constant and T is temperature.
From Eq. (6), we find for the equal-time correlation
function of u
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We can model a time-dependent disturbance to the
system by shifting the noise in Eq. (6) g(q, t) ~ g(q, t) +
f(q, t). The response of the system to f(q, t) is given by

(u(q, t)) = dt' C(q, t, t')f(q(t' —t), t'),

C(q, t, t') = exp~ — dt" P(q(t"))~(q(t"))
~
. (12)

For all orientations O, disturbances created by f relax
exponentially with a decay rate that depends on the
convected value of q. In order to search for an instability,
we must go beyond the linear equation (6). The smectic
Hamiltonian with the leading anharmonic corrections is
given by [20]

2

d r —O, u + —(Viu) + (V„u)2 ' 2 2

[q, and qY pick up q, dependence through convection,
Eq. (3).] A contribution to 8 au that is proportional to q2
and negative, on the other hand, will be destabilizing. As
discussed in the introduction, this is in accord with the
intuition that a local tilt of the smectic layers in the neutral
direction, i.e., a local change in 0, corresponds to a mode
with q ~~ y.

We have computed the response function C(q, t, t') for
Eq. (15) perturbatively to one-loop order. If we assume
f(q, t) is nonzero only for q = q~y, then, in the limit of
long times (low frequencies), linear response still takes
the form of Eq. (11) with the response function as in
Eq. (16). After taking care to maintain Eq. (14), we find,
again in the limit of small y,

z'l q, T
6 cu (q) = —c2q 2 + — (y cosO) + . , (17)

+ C B,u+ —V~u 2

The last term in Eq. (13) is a counterterm that is used to
enforce the condition [20]

(14)

which ensures that u describes deviations from the aver-
age layer spacing.

Although we have had to include nonlinear corrections
in 9f, this does not mean that the physics underlying
the response function differs from the physics presented
in the introduction and contained in +, which was only
computed for the quadratic Hamiltonian Eq. (1). The
nonlinear terms in Eq. (13) are not arbitrary: they are
determined by requiring that rotating the layers (in the
absence of shear) does not cost any energy [20]. Since +
has been calculated for arbitrary tilt 0 within the harmonic
theory, it, in principle, contains the same information as
the anharmonic terms to one loop.

The equations of motion are now nonlinear,

&a . al
( Bt Bq„r
——yq u(q) + P(q) = g(q, t) + f(q, t),

6u
(15)

0
dt" P(q(t"))[ (q(t")) + 6 (q(t"))] . (16)

~

The shift Bcu(q) corresponds to a renormalization of B
and K; rotation invariance forbids a term proportional
to q~ from appearing [20]. In the presence of shear,
however, we can no longer invoke rotation invariance and
we expect terms quadratic in q and qY to appear. For
sufficiently long times, the q -dependent terms will be
small compared with the Bq~ and Kq~ terms in co(q(t))

= exp

but we are free to choose f(q, t) arbitrarily small so that
linear response is still correct. For zero shear y = 0, the
response function, to one loop order, takes the form

C(q, t, t')

2 ~BT
Bccp(q) = c3q g3

+ I ~ '(18)

where c3 = 4.6 X 10 3. Thus for the a orientation, the
correction 6' is positive and the smectic is stable.

As was mentioned previously, in concluding that the c
orientation is unstable we have assumed 2 + g'/q ) 0.
In fact, there is a small window in which the sign may be
reversed. The five viscosities that enter the constitutive
relation between stress and strain rate in a uniaxial ftuid
are constrained by the requirement of non-negative energy
dissipation [12]. In our case [13],this requires il ~ 0 and
g' ~ —4g. Thus as g' is lowered into the range —4g ~
r]' ~ —2r), we find a transition to a regime in which the
smectic is stable for all orientations 0. This range of
viscosities corresponds to small dissipation for uniaxial
extensional fiow along g compared with the dissipation
for shear flow. Unfortunately, we have no simple physical
argument for this result.

We have considered the shear How of well-aligned one-
component smectic phases outside of the critical regime.
Very close to the nematic-smectic transition, where ne-
matic fluctuations are large, our analysis is inappropri-
ate. However, the appearance of the a orientation in this
regime has been accounted for in [2]. Our work is simi-
larly complementary to that in [10], where the role of
amplitude fluctuations is considered. Also note that our

where c2 = 1.4 X 10 is determined numerically. For q
along y, cu(q) goes as q and so for sufficiently small q~,
6co » ~. Hence, for orientations with 0 not too close to
vr/2 (i.e., away from the a orientation), disturbances with

q ~~ j will grow and the smectic will be unstable. Here we
have implicitly assumed 2 + g'/g ~ 0; we will return to
this point below.

When O is sufficiently close to vr/2 such that cosO—
y sinO, subleading terms in Eq. (17) will be important and
can change the sign of 6cu. To check the stability of
the smectic in this limit, we have computed the response
function for O = vr/2. In this case we find
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analysis requires modification for two-component systems
(i.e., lyotropic stnectics) where there is an additional hy-
drodynamic variable.

We have argued that, as a result of convection and the
higher energetic cost of compressing smectic layers com-
pared with bending, there is a greater suppression of Auc-
tuations in the c orientation. With the naive view that
the steady-state behavior is determined by minimization
of a "nonequilibrium free energy,

" the a orientation will
be favored over c. To demonstrate the scenario suggested
by these arguments, we have computed the dynamic re-
sponse of the system to a long-wavelength perturbation
corresponding to a local tilt of the layers. We find that
over most of the range of allowed values for the anisotropic
viscosity, the c orientation and orientations intermediate
between c and a are indeed unstable and the a orientation
is stable. Surprisingly, we have also found that there is a
window of values for the viscosity in which all orientations
are stable. Our treatment completely neglects the role of
defects as well as the possibility of a nonlinear relation
between stress and strain rate (non-Newtonian behavior),
both of which are likely to play an important role in some
ranges of temperature and shear. While our analysis by no
means accounts for the entire phase behavior of smectics
under shear, we suggest that the mechanism described in
this paper may account for the prevalence of the a orienta-
tion observed in the shear How of one-component smectics.

We would like to thank Glenn Fredrickson for helpful
discus ssons.

[1] C. R. Safinya, E.B. Sirota, and R. J. Piano, Phys. Rev.
Lett. 66, 1986 (1991).

[2]

[3]

[4]

l5]

[6]

[7]

[9]

[10]
[11]

[12]

[13]

[14]

[16]

[17]
[18]
I 19]

[20]

C. R. Safinya, E.B. Sirota, R. F. Bruinsma, C. Jeppesen,
R. J. Piano, and L.J. Wenzel, Science 261, 588
(1993).
S.H. J. Idziak, C. R. Safinya, R. S. Hill, K.E. Kaiser,
M. Ruths, H. E. Warriner, S. Steinberg, K. S. Liang, and
J.N. Israelachvili, Science 264, 1915 (1994).
P. Panizza, P. Archambault, and D. Roux (to be
published).
K. A. Koppi, M. Tirrell, F. S. Bates, K. Almdal, and R. H.
Colby, J. Phys. II (France) 2, 1941 (1992).
K. A. Koppi, M. Tirrell, F.S. Bates, and K. Almdal, Phys.
Rev. Lett. 70, 1449 (1993).
K. I. Winey, S.S. Patel, R. G. Larson, and H. Watanabe,
Macromolecules 26, 2542 (1993).
K. I. Winey, S.S. Patel, R. G. Larson, and H. Watanabe,
Macromolecules 26, 4373 (1993).
R. M. Kannan and J.A. Kornfield, Macromolecules 27,
1177 (1994).
G. Fredrickson, J. Rheol. 3S, 1045 (1994).
P. G. de Gennes and J. Prost, The Physics of Liquid
Crystals (Oxford, New York, 1993).
P. C. Martin, O. Parodi, and P. S. Pershan, Phys. Rev. A
6, 2401 (1972).
In the notation of [12], rt = g3 and rt' =

g& + rt, —
4q3 —2r]5 + g4.
A.-M. S. Tremblay, M. Arai, and E.D. Siggia, Phys. Rev.
A 23, 1451 (1981).
A. Onuki and K. Kawasaki, Ann. Phys. (N.Y.) 121, 456
(1979).
G. H. Fredrickson and R. G. Larson, J. Chem. Phys. S6,
1553 (1987).
S. Ramaswamy, Phys. Rev. A 29, 1506 (1984).
R. Bruinsma and Y. Rabin, Phys. Rev. A 45, 994 (1992).
K. Amundson and E. Helfand, Macromolecules 26, 1324
(1993).
G. Grinstein and R. A. Pelcovits, Phys. Rev. Lett. 47, 856
(1981);Phys. Rev. A 26, 915 (1982).

1778


