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Radiation Reaction in a Continuous Focusing Channel
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We show that the radiation damping rate of the transverse action of a particle in a straight,
continuous focusing system is independent of the particle energy, and that no quantum excitation is
induced. This absolute damping effect leads to the existence of a transverse ground state to which
the particle inevitably decays and yields the minimum beam emittance that one can ever attain,

Y€min = h/2mc, limited only by the uncertainty principle.

Because of adiabatic invariance, the particle

can be accelerated along the focusing channel in its ground state without any radiation energy loss.

PACS numbers: 41.60.—m, 29.27.Eq, 41.75.Ht, 61.60.Mk

In an electron or positron storage ring the amplitude
of transverse oscillations damps towards a stable closed
trajectory. This damping is caused by the emission of
synchrotron radiation due to the uniform bending fields
and by the replacement of the energy in the longitudi-
nal direction only. The damping time is approximately
equal to the time it takes to radiate away the initial en-
ergy of the particle. This damping is counteracted by
random fluctuations generated by the discrete photons
emitted by each electron, which leads to an equilibrium
beam emittance when the damping and excitation rates
cancel [1,2].

Radiation damping and excitation are, in principle,
present in a straight magnetic or electric focusing system
because particles with finite amplitude are bent back
towards the straight line trajectory. However, these
effects may be modified because the fields are not
uniform in such a focusing system. Motivated by these
considerations and also by proposals for accelerating
charged particles in crystals [3,4], in this paper we
study the radiation reaction effect on a charged particle
undulating in a straight, continuous focusing system.

Consider an electrostatic focusing channel that provides
a transverse continuous potential V(x) = Kx2/2 for a
charged particle, say, a positron, where K is the focusing
strength. The parabolic potential could be, for example,
an approximation of the Lindhard potential in the case
of planar crystal channeling [5,6]. For simplicity, we
take x as the single transverse dimension of the particle,
which has relativistic energy £ = ym and which moves
freely (without acceleration) in the longitudinal z direction
with a constant momentum p, = ymf3, in the absence
of radiation. We set ¢ = /i = ¢ = 1| in most equations,
but reinsert them when suitable. The effect of the
additional transverse dimension will be discussed later.
We consider the case in which the peak transverse
momentum in one oscillation pymax << p,. Defining

E, = ym? + p2Z, we can approximate the total energy,

E=.m 2+p2+px + V(x), as E, + E,, where E,
p2/2E, + V(x) is the so-called transverse energy. The
motion of the particle is now decoupled into two parts:
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a free relativistic longitudinal motion and a transverse
harmonic oscillation with an effective mass E,.

We now move straight to quantum mechanical analysis
of the system because we want to calculate the full
radiation reaction including damping and excitation due
to discrete photon emissions. Work on relativistic crystal
channeling has shown that the spin degree of freedom
plays a negligible role [7]. Therefore we use the Klein-
Gordon equation to describe the general wave function
W(x, z,t) of the channeled particle,

[(—=iV — A)? + m?]¥ = (is, — V)*T. ¢))
In the absence of radiation, we let A = 0 and look for
the energy levels E and the stationary states W(x,z,t) =

e B n, p,) of Eq. (1) by neglecting terms of the order
(E./E)?* [8]. We find

E=E, + E, =m?+ p2 + w,(n +1/2), (2)
n, pz) = (Cn/L)l/z(Ezwz)l/4eipzze_EszX2/2Hn( E, 0, x)v
3)

where C, = (2"n!\/)”!, L is the length of the
channel, E, = \/m? + p? as before, w, = K/E, is

the transverse oscillation frequency, n is the transverse
quantum number (n = 0, 1,2,...), and H,, is the nth-order
Hermite polynomial. It is clear that the transverse energy
level E, = (n + %)wz and the transverse state function
are controlled by both n and p,.

Coupling between the channeled particle and the radia-
tion field, represented by the vector potential A in Eq. (1),
leads to spontaneous emission of photons. By choosing
Coulomb gauge, V- A = 0, and ignoring the A? term
(double-photon emission), we arrive at
[V + m? + i2A - V]¥(x,z,1) = (i3, — V)*¥(x,z,1).

@)
Moving to the interaction representation we write
W(x,z,1) = exp(—i Hot)p(x,z,¢). Identifying (Hy —
V)? = (—=V? + m?), and neglecting ¢(¢) in the expansion
of (i3, — V)>W¥(z) in Eq. (4), we obtain

G(t) = T Hy — V)TIA - Ve Ty, (5)
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Using first-order, time-dependent perturbation theory
(Fermi’s golden rule), we obtain the transition rate Wy;
for the particle from an initial state |n, p,) (with energy E)
to a final state |n'p]) ( with energy E'):

Wy = 2w My |*8(E — E' — w,), (6)
where the matrix element My; is defined by
IMfi > = Kn', plsky|(Ho = V)T'A - Vin, ps OF . (D)

The vector potential A acting on the radiation field
creates a photon of momentum k., and energy o, (0, =
|k, ) with two possible polarizations €, and &, (&, - &, =
0 and é,, - k, = 0). The operator (Hy — V)~! can be
approximated as FH; ' by neglecting terms of the order
(E./E). Therefore

2ar 2 —iKk. X/ A
M ? = 2= S [ plle ™ %@y - Vln )P ®)
. Y j=1

The integral over z in the above equation gives rise
to 8(p, — p, — k,.), which expresses the conservation
of longitudinal momentum. Together with the conserva-
tion of energy, this places a tight constraint on the radia-
tion reaction of the particle. In order to conserve longi-
tudinal momentum, we have p. = p, — w, cosf, where
6 is the photon emission angle relative to the focusing
axis. For the photon energy w, < E, the longitudinal
energy E, = /m? + p? must accordingly decrease by an
amount AE, = (p,/E,)Ap, = w, B cosf. Since the total
energy of the particle is reduced by an amount w,, its
transverse energy E, = E — E, must decrease by AE, =
w,(1 — Bcosh) > 0. It follows that (n + %)wz — (n' +
%)wé = w,(l — Bcosf) > 0. For a small change in E,
w! =K/(E, — AE,) = w,(1 + AE,/2E;).  Substitut-
ing w, B cosé for AE,, we obtain an equation that relates
the change of the transverse quantum number to the pho-
ton energy and its emission angle,

(n — now, = (1 — Bcoshw,
+ (wy B coSO)E,/2E, >0,  (9)

which is always positive definite. We therefore conclude
that both the transverse energy and the transverse quantum
number always decrease after a photon emission process
for all possible photon angles.

Introducing the harmonic number v = n — »n’ and the
pitch angle of the particle 6, = p.max/p. = V2E</E,, we
find from Eq. (9) a condition for the photon energy

v, _ 2y%vow,
1 — Bcosh + 02/4 1+ y202 + y262/2°
(10)
Note that y#, in the above equation plays the same role
as the undulator strength parameter in undulator radia-
tion [9].

The exact form of the transition rate Wy given by
the integral over x in Eq. (8) is more complex than
usual because the initial and the final transverse states
have different effective masses. This issue is handled
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Wy =

by expanding the final transverse wave function as a
superposition of the initial ones. One can then express
Wy; in terms of associated Legendre polynomials and
Laguerre functions [10,11]. However, in the “undulator”
regime where y0, < 1, the effective mass difference can
be ignored for w, < E, and Eq. (8) can be evaluated
by the dipole approximation [7] where terms beyond the
linear order in x are neglected. Thus the transition rate is
nonzero only if n/ = n — 1 (the dipole selection rule) and
is simply given by

_ 27*nw, | cos’p(cosd — B)? .
Wri = E.w, |: (1 — Bcosh)? + sin®e
X 8[(1 — Bcosblw, — w,]. (1

Therefore in this regime the rate of change of the
particle’s total energy due to dipole radiation is

dE 4k, 2 r.K

_=§ E — E)YW, = ——-¢ 20k

dt 7 f (27r)3( EYWs 3 me Y MO
(12)

where r, = e%/mc? is the classical electron radius. After
identifying nfiw, with the rms amplitude of the oscillating
particle in the large-n limit (nhw, = E, = K(x?)), we see
that dE/dr in the above expression is identical to the
classical radiation power, which is proportional to E2F?
(F, being the transverse focusing field strength).

We have shown from Eq. (9) that the transverse
quantum level n always decreases after a random photon
emission. This conclusion is valid for all oscillation
amplitudes, although we focus on the undulator regime
where y60, < 1 to illustrate the unique feature of radi-
ation reaction in a focusing channel. With the dipole
transition rate given by Eq. (11), we can calculate the rate
of change of the transverse quantum level

dn f d’k,

dt g 27)3
We see that n damps exponentially with an energy-
independent damping constant I'. = 2r,K/3mc. Note
that in the case of radiation in a bending magnet, there
is an additional term of opposite sign independent of the
quantum level in question that represents the excitation of
transverse oscillations [2]. That term is absent in Eq. (13)
and the radiation damping is absolute because no quantum
excitation is induced by random photon emissions. Since
the action of the transverse oscillation is J, = E,/w, =
(1 + 1/2)h, the decrement of the transverse energy level
n leads to the radiation damping of this action given by
dJ,/dt = —T.(J, — i/2).

One can use classical radiation reaction to obtain a
similar result for the radiation damping of the transverse
oscillation amplitude [12]. However, our treatment shows
that it is the action that damps exponentially (the change
of energy modifies the amplitude damping). It also clearly

shows how to extend the results to the case where y6, =
1. More importantly, the quantum mechanical calculation

(n' = MWy = —=

(13)
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above automatically takes into account the full radiation
reaction and shows the absence of excitation in this
system (a surprising result viewed from the standpoint of
electron synchrotrons and storage rings). It is difficult if
not impossible to model the radiation effect of discrete
photon emissions classically for y6, < 1, because the
time during which a typical photon is emitted is much
longer than the oscillation period in the undulator re-
gime [2].

The excitation-free reaction of radiation comes from the
fact that the transverse quantum level must decrease af-
ter each radiation process. In the longitudinal direction
the particle recoils against the emitted photon in order
to conserve the longitudinal momentum between the two
particles. However, in the transverse direction the ex-
istence of the focusing force destroys the momentum
balance and suppresses the recoil effect. The external
focusing environment absorbs the excess transverse mo-
mentum during the process of radiation. In this sense, the
radiation reaction of a channeled particle in the transverse
dimension is similar to that in the Mossbauer effect [13].

Because of the lack of recoil and excitation in the
transverse dimension, the particle damps exponentially to
its transverse ground state (n = 0), and this ground state
is stable against further radiation (energy and momentum
conservation forbid further radiation). In the ground state
the particle reaches the minimum value of the action
Jo = K/2. Relating this minimum action to a normalized
emittance, we find

A /2, (14)

where A, = fi/mc is the Compton wavelength. This
minimum is also the fundamental emittance limited by the
uncertainty principle.

One can estimate the time needed for a particle to
damp to its ground state. Suppose the particle enters
the focusing channel with a transverse energy (n; +
%)wz satisfying the undulator condition, it reaches the
ground state in a time ¢, ~ In(n;)/I';. To illustrate the
range of damping times, let us consider two extreme
examples: crystal channels and conventional focusing
devices for accelerators. The channeling strength for a
typical crystal channel is K ~ 10'' GeV/m? so I', ~
(10 nsec)™!. When a 100 MeV particle is initially barely
captured by the crystal channel, the transverse energy of
the particle is of the order of the maximum channeling
potential energy 100 eV, and the corresponding quantum
number n; is about 500. Thus in the absence of any
dechanneling effects such as multiple scattering [14], the
time it takes to damp to the ground state is ¢, ~ 60 nsec.
For a conventional linear focusing device, the focusing
strength is about K ~ 30 GeV/m?, so I'. ~ (30 sec)™!.
The damping time to the ground state in this case depends
upon the logarithm of the initial state »;, but will usually
be several e-folding times.

Another novel characteristic of this radiation reaction
is that the relative damping rate of the transverse action

Y €min = JO/mC =

can be much faster than the relative damping rate of
longitudinal momentum, i.e., the radiation reaction is
asymmetric in these two dimensions. The rate of change
of the longitudinal momentum can be obtained from the
energy loss equation, Eq. (12), with the approximation
p. = E, = E. We obtain
1 | dE re , .,
== | — |= —vy°6;, 15
E \ e |~ 277 1)
which is less than I', for 7202 < 2. In the undulator
regime we have the condition y#, < 1, thus

1 di,
J, dt

One major consequence of the above inequality is
that a particle may lose only a negligible amount of
total energy when it is damped to the transverse ground
state. By replacing n = n; exp(—T'.t) and w, = /Kc2/E
in Eq. (12) and integrating over time, we find the final
energy retained in the ground state ny = 0 is

E; = E;/[1 + (y8,)}/41. (17)

Note that Eq. (17) is derived in the undulator regime
where y6, < 1. Thus particles that enter the focusing
channel with the same initial energy but different initial
pitch angles will all end up in the transverse ground state
with a very small relative longitudinal energy spread of
(76,)i /2.

We have shown that the radiation reaction in a straight,
continuous focusing channel is fundamentally different
from that in a bending magnet. In a uniform magnetic
field, the radiating particle recoils against the emitted
photon by both reducing its orbital quantum number and
by shifting the center of its circular orbit [2]. This latter
change is allowed due to the translational invariance of the
system in the plane perpendicular to the magnetic field,
i.e., the system is degenerate with regard to the orbiting
centers. The center shift is even necessary in order that
the tangent of the particle trajectory be continuous before
and after the emission. Therefore the photon emission
yields a random recoil of the electron due to variations
in both angle and magnitude of the photon’s momentum.
The resulting random shifts in the orbit center give rise to
the random excitations of radial betatron oscillations.

On the other hand, the existence of a focusing axis
in a straight, continuous focusing environment removes
such a degeneracy and therefore eliminates any quantum
excitation to the particle from random photon emissions.
In a conventional storage ring, the stored particles are
confined by both bending and focusing fields. However,
the focusing field is typically so much weaker than
the bending field that its radiation effect is negligible.
On the average, radiation damping in a conventional
storage ring shrinks the momentum vector of the particle
proportionally [1,15].

Nevertheless, the above results of straight, focusing
channels can be extended to ‘“quasistraight” systems
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provided that the focusing field is much stronger than
the bending field. The radiation formation length due
to bending is of the order p/y [1,2 ], where p is
the bending radius. When this length is much longer
than the betatron wavelength, the transverse damping due
to the local oscillations is much faster than that caused
by the global bending of the trajectory. In this case the
radiation reaction is dominated by the focusing field [11].

We note that all the results obtained here are not
affected by adiabatic acceleration along the longitudinal
direction, since both the action and the stationary states
in our system are adiabatic invariants. The condition for
adiabatic acceleration is given by

dEaccel
dt

Using the previous examples, we get w,E ~ 10° GeV/m
for a crystal channel and 2 GeV/m for a conventional
focusing device when the energy of the particle is only
100 MeV. Obviously, the above inequality is guaranteed
by any foreseeable acceleration mechanism. We conclude
that the particle, once damped to its transverse ground
state in a continuous focusing channel, can be acceler-
ated adiabatically along the channel without any further
radiation loss. Therefore the theoretical minimum trans-
verse emittance can be retained at a much higher acceler-
ated particle energy, and the relative longitudinal energy
spread can be reduced through acceleration.

We have left out the other transverse degree of freedom
of the particle for the sake of simplicity. If the y direction
is free of any force, the particle radiating a photon with a
momentum component in the y direction must recoil by
the same magnitude to conserve total momentum in this
direction. In general, quantum excitations are present in a
force-free dimension. However, if a continuous focusing
force also exists in the y direction, and if both transverse
oscillations satisfy the conditions y¢;, < 1 and y6) < 1,
then it is straightforward to extend the discussion above
to both transverse dimensions because radiation reaction
effects in the x and y directions are completely decoupled.
Photons are emitted by changing either n, or n, by one,
and all the previous results apply to both dimensions. In
the case where the oscillation amplitude is large in the
x or y direction, there is some coupling between the
two transverse degrees of freedom. But if we define
the total transverse energy E, = p2/2E, + K1x%/2 +
p3/2E; + Kyy?/2, from the conservation of both energy
and longitudinal momentum, it follows that E, always
decreases after a random photon emission. Combining
this with the existence of a focusing axis in the continuous
focusing system, we conclude that the particle must damp
to a mutual transverse ground state (n, = 0 and n, = 0)
that is stable against further radiation.

The basic results obtained here apply to any straight or
quasistraight, continuous focusing system. The excitation-
free, asymmetric radiation reaction in such systems is
the direct consequence of the kinematic requirements and
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< w,E = VKE . (18)

does not depend on the various approximations used here.
There may be interesting applications of this phenomenon
in beam handling, cooling, and acceleration. For example,
in a sufficiently low-energy, focusing-dominated electron
ring, the absolute transverse damping could perhaps be uti-
lized to obtain ultracool beams in transverse phase space
with negligible total energy loss. Proposals of miniature
linacs powered by lasers [16] would require very strong
mesoscopic focusing systems. The results of this Letter
provide a radiation damping mechanism to prevent emit-
tance growth. The existence of a transverse ground state
for the accelerated particles might also be quite relevant
and important. However, when realistic systems are con-
sidered, some of the results shown here may be modi-
fied. For instance, if other sources of excitation (multiple
Coulomb scattering, imperfections, etc.) are present, then
the beam may not reach the minimum emittance. When
these additional effects are included, the actual equilibrium
beam emittance will depend upon the details of the appli-
cation considered.
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