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Characterization of the Transition from Defect to Phase Turbulence
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For the complex Ginzburg-Landau equation on a large periodic interval, we show that the transition
from defect to phase turbulence is more accurately described as a smooth crossover rather than as a
sharp continuous transition. We obtain this conclusion by using a parallel computer to calculate various
order parameters, especially the density of space-time defects, the Lyapunov dimension density, and
correlation lengths. Remarkably, the correlation length of the field amplitude fluctuations is, within a
constant factor, equal to the length scale defined by the dimension density.
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Recent advances in laboratory technique [1] and in
computer simulation [2—4] have opened up the study of
boundary-independent spatiotemporal chaos in large ho-
mogeneous sustained nonequilibrium systems [5]. Many
fundamental questions remain unanswered about such
chaotic systems, e.g. , what different states can occur, how
transport depends on different states, and what kinds of
bifurcations separate one state from another. An espe-
cially interesting question is whether ideas from statistical
mechanics might be applicable to chaotic nonequilibrium
systems in the thermodynamic limit of infinite system size
[6—8].

A significant step towards understanding some of these
questions was recently reported by Shraiman et al. [2].
These researchers studied different spatiotemporal chaotic
states of the one-dimensional complex Ginzburg-Landau
equation

B,u(x, t) = u + (1 + tc&)B u —(1 —ic3)~u~ u, (1)
on a large periodic interval of length L = 1024, which
they assumed to be large enough to approximate the
thermodynamic limit of an infinite system size. Here the
variables t and x denote time and position, respectively,
the complex-valued field u(x, t) = pe'~ has magnitude
p(x, t) and phase P(x, t), and the parameters c~ ~ 0 and
c3 ~ 0 are real valued. Equation (1) is an important
model of spatiotemporal chaos because it is simple,
experimentally relevant, and universal [8]. Interesting
dynamics are predicted and are observed beyond the
Newell line ci c3 = 1, since all plane wave solutions
of Eq. (1) are linearly unstable to the Benjamin-Feir
instability for c~c3 ~ 1 [8].

Shraiman et al. summarized their simulations in the
form of a phase diagram in the ci-c3 parameter plane
(Fig. 3 of Ref. [2]). Based mainly on calculations of
the density of space-time defects no [9], this diagram
showed continuous and discontinuous transition lines
(analogous to second- and first-order phase transitions)
separating defect-turbulent from phase-turbulent states
[9]. Of special interest to us is the continuous chaos-
to-chaos transition line labeled L~ in their Fig. 3, which
occurs for c& ~ 1.8. It is somewhat mysterious why
the density nD decreases to zero at an L& line that is

distinct from the Newell line: In the limit of infinite
system size and of infinite time, what prevents defects
from forming anywhere to the right of the Newell line
(c3 ~ I/c&)? The mystery of the L~ line can be partly
appreciated by trying to reason by analogy to equilibrium
statistical physics. Assuming that the chaotic fluctuations
of Eq. (1) act as a finite-temperature ergodic noise bath
and observing that the derivatives in Eq. (1) represent
short-ranged interactions between different parts of the
field u, we would not expect distinct phases at finite
temperature in one-space dimension [10].

Because so little is known about possible critical phe-
nomena of large homogeneous nonequilibrium systems,
and because Eq. (1) is such an important model, we have
tried to characterize more carefully the dynamics near
the Li line for the fixed parameter value c~ = 3.5. By
calculating various order parameters over length scales
as large as L ~ 10 and over time scales as large as
T ~ 10, we are able to show below that the change
from defect to phase turbulence near the L~ line is more
accurately described as a smooth crossover rather than
as a sharp continuous transition with power-law scaling
of order parameters [2]. We have also studied whether
the dimension density 6 (Lyapunov fractal dimension per
unit volume) is a useful order parameter for characteriz-
ing changes in spatiotemporal chaotic states [3,8]. The
dimension density defines a dimension correlation length

't" [8] which is the characteristic size of dy-
namically independent subsystems of spatial dimension-
ality d [3]. A comparison of $s with other characteristic
length scales as a function of the parameter c3 gives the
remarkable result that gs is, up to a constant factor, equal
to the spatial correlation length of the field magnitude
Iluctuations se~ from the Newell line to beyond the L~
line. An important resource for these calculations was a
CM-5 parallel computer [3], which facilitated the study
of much larger space-time and parameter regions than
were previously conveniently accessible.

Before discussing our results, we note that for c~ = 3.5,
for an integration time of T = 105, and for a periodic
interval of length L = 1024, Shraiman et al. argued the
existence of the L& line using two key observations [2]:
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a, @ = —e a', @ ——c', (1 + c,') a, (b —(ci + c3) (a cb)',

c]c3 1, (2)

and the amplitude p becomes an algebraic function of a
spatial derivative of the phase

t = 1 —(ci/2)~.'4.

(1) that the density nD vanished as a power law no ~
(c3 c3) with exponent n = 2 and with c3 = 0.77 )
c3' "= I/c~ = 0.286; and (2) that the correlation time

of phase fiuctuations [2] diverged as a power law
also at cq, as the inverse of the defect density,
1/no. For c3 ( c3, Shraiman et al. observed a less-
disordered phase-turbulent regime with n& empirically
equal to zero and with slower-than-exponential decay of
temporal correlations [2]. If defects do not occur in the
thermodynamic limit, a perturbation theory in the small
quantity e = c]c3 —1 yields a simpler description of
phase turbulence near the Newell line, e 0. In that
limit, Eq. (1) reduces to the Kuramoto-Sivashinsky (KS)
equation [8,11]
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nD = a exp[ —b/(c3 c3") ], (4)

which is the expected behavior for thermodynamic
Gaussian fiuctuations of the phase gradient 8 @ if large
values of the latter are the reason for defect nucleation
[2]. If we set n = 1, a least-squares fit of Eq. (4) to
the nine leftmost data points yields the three parameter
values a = 0.66, b = 0.98, and cg" = 0.70 ( cg' = 0.74
with~ = 8, 1 X 10 '. lf we set cq" = c3' ' =0286
to test whether Eq. (4) is consistent with the onset of
phase turbulence at the Newell line, a least-squares fit
(again to the nine leftmost points) gives the parameter
values a = 0.018, b = 0.017, and cx = 8.8 with a substan-

Some of our calculations below provide the first quanti-
tative comparisons of phase turbulence as described by
Eqs. (2) and (3) with phase turbulence as empirically ob-
served in Eq. (1).

For the parameter value c] = 3.5, for a system size
L = 4096, and for an effective integration time of T = 10
(after allowing transients of duration 104 to decay), we find
in Fig. 1 that n& is finite substantially to the left of the
I ~ line as calculated in Ref. [2]. Far to the right hand
side of the I i line, our data in Fig. 1(a) approximately
reproduce the previously reported [2] power-law scaling
with exponent o. = 2. Closer to the L] line, a least-
squares fit of the three-parameter expression a(c3 —c3 )
to the nine leftmost points gives a much larger exponent
n = 6.8, with an onset of phase turbulence (no = 0) at
c3' = 0.74 ( cq = 0.77. Assuming equal errors bars on
all data points, we find the chi-square value for the fit to
be ~2 = 4 6 & 10

—i2 The increase in the exponent with
increased space-time resolution suggests that a power-law
scaling is inappropriate. As shown in Fig. 1(b), we find
a somewhat better fit of the same data with the functional
form
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FIG. 1. (a) Log-log plot of the space-time defect density np
versus the distance c3 —c&' to the fitted point c&' where the
density goes to zero (onset of phase turbulence) for system size
I = 4096, integration time T = 10', and an average over 64
randomly specified initial conditions. The numerical time step
was At = 0.05. The arrow labeled "L,l" indicates the position
of the I

&
line for parameter value c~ = 3.5 [2]. The smallest

no value corresponds to a count of 200 defects. The two
solid lines were drawn to indicate the previous and present
best estimates of the exponent o. of a power-law scaling. The
crosses are the data from Ref. [2]. In (b), we find that Eq. (4)
with exponent n = 1 gives a better fit of the same data, with
an onset of phase turbulence at c~" = 0.70. The straight line is
a plot of Eq. (4) over the range of its fit.

tially poorer ~ = 8.2 X 10 ". Our data spanning the
crossover region evidently lie too far to the right of the
Newell line to determine whether the defect density goes
to zero before or at this line.

To test independently the important implication of
Fig. 1 that a crossover occurs, we have calculated other
order parameters over the same parameter range. In
Fig. 2(a), we show the phase spatial correlation length g~
of the quantity e'~( ') [2,3] as a function of c3. Shraiman
et al. argued that g~ should be finite in the phase turbulent
regime of Eq. (1) and estimated its value indirectly by
calculating a phase diffusion coefficient D = I/g~ from
phase-gradient correlations [2,3]. Exponential decay of
spatial correlations is also expected for phase turbulence if
the latter is described at long wavelengths by the Kardar-
Parisi-Zhang (KPZ) Langevin equation [12]. By going to
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ally shorter, correlation length scale g~ associated with
fluctuations of the field amplitude p (also with the phase
gradient 8, @). Figure 2(b) compares the reciprocals of
the phase and amplitude correlation lengths with the
Lyapunov dimension density 6, whose reciprocal defines
the dimension correlation length $q discussed above [3].
Up to a constant factor of 1.4, we find that the amplitude
correlation length equals the dimension correlation length

gq over a substantial range of parameter cq. (An inde-
pendent and related result was also recently reported by
other researchers [13].) This remarkable result suggests
that the big fractal dimension of some large homogeneous
chaotic systems might be accurately estimated by simple
correlation function calculations

In Fig. 3, we make two final comparisons of how phase
turbulence, as described by the adiabatic approximation
Eq. (3) and by solutions of the KS equation (2), agrees
with numerical solutions of Eq. (1). The dimension den-
sity 6 of the KS equation has been calculated to be
6 = 0.230 for the rescaled parameterless version of the
KS equation [14] 8, @ = —cI, P —84 P —P 8 P. Restor-
ing the original space, time, and magnitude scalings gives
the following c~ and cq dependence of the dimension den-
sity for KS phase turbulence:
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FIG. 2. (a) Plot of the phase correlation length g~ for
solutions of Eq. (1) for system sizes of up to L = 106,
integration times of up to T = 2 & 10, and averages 64
randomly chosen initial conditions. The crosses denote the
similar data from Ref. [2]. The solid curve is an analytical
expression obtained by scaling the finite correlation length of
the parameterless KS equation and is proportional to e / as
e 0 [3]. (b) Plot of the Lyapunov dimension density 6 [3]
and the reciprocals I/g~ and I/g~ of the amplitude and phase
correlation lengths. The reciprocal length I/g~ (open circles)
has been scaled by a constant factor of 0.7 to emphasize the
close agreement with 6. The positions of the Newell and LI
lines for c] = 3.5 are denoted by the arrows labeled "N" and
"L]," respectively.

quite large system sizes (L = 106) and to long integration
times, we have verified directly that the phase spatial
correlation function decays exponentially well to the left
of the L& line as shown in Fig. 2(a). As the parameter ci
decreases, the quantity $@ varies smoothly through a local
maximum near the L& line, and then increases steadily
until we can no longer estimate its value accurately with
our computer resources. The smooth variation of $y
through the L] region is consistent with a crossover rather
than with a sharp transition. The apparent divergence
of g@ upon approaching the Newell line e ~ 0 can be
understood semiquantitatively as shown in Fig. 2(a) by
a scaling argument [3] that predicts g@ ~ e ~/z. The
agreement is within about 10%.

The phase correlation length $~ is the same as that
of the field u itself [3], but there is a separate, gener-

In Fig. 3(a), we compare Eq. (5) with our empirically de-
termined values of 6 for Eq. (1) from Fig. 2(b). The
agreement is good up to about cq = 0.5 (e = 0.75), and
then there is an increasing deviation of the actual solutions
from Eq. (5). This deviation with increasing cz may arise
because the adiabatic approximation Eq. (3) breaks down
or because higher-order terms in the KS equation are
renormalizing the dimension density. Figure 3(b) gives
some further insight by comparing the mean-square Auc-
tuation of p from Eq. (1) with the mean-square iluctuation
of p as given by Eq. (3). We observe a previously unre-
ported power-law scaling of these amplitude fluctuations
with exponent u = 4 from the Newell line to near the L],
line. Sufficiently close to the Newell line, an exponent of
4 is predicted by rescaling the solutions of Eq. (2). The
adiabatic approximation is satisfied over a larger range in

c3 than the agreement between dimension densities.
In conclusion, we have used a parallel computer to

characterize more carefully the change from defect to
phase turbulence near the L] line in the periodic one-
dimensional Ginzburg-Landau equation in the limit of
large system size. Instead of a sharp continuous transition
with power-law scaling of order parameters [2], we found
a smooth crossover which suggests that phase turbulence
may not exist in the thermodynamic limit of infinite system
size. We also found that a short length scale associated
with amplitude fluctuations g~ equals, up to a constant
factor, the dimension correlation length gq associated
with the dimension density. This suggests that spatial
correlations of certain observables may suffice to estimate
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FIG. 3. (a) Comparison of the dimension density 6 for
solutions for Eq. (1) with the rescaled dimension density of
the KS equation, Eq. (5), for ci = 3.5. (b) Comparison of
the mean-square fluctuations of the amplitude p as calculated
from the one-dimensional CGL equation and as calculated from
the adiabatic approximation, Eq. (3), with @ determined from
Eq. (1). In both (a) and (b), the arrows labeled "N" and "I,"
denote the positions of the Newell and I.] lines, respectively,
for c] = 3.5.

big fractal dimensions of some large homogeneous chaotic
systems. It will be quite interesting to study the generality
of these results with further simulations and experiments,
especially in two-space dimensions.
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