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Bottleneck Effects in Turbulence: Scaling Phenomena in r versus p Space
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We (analytically) calculate the energy spectrum corresponding to various experimental and numerical
turbulence data analyzed by Benzi et al. We find two bottleneck phenomena: While the local scaling
exponent g„(r)of the structure function decreases monotonically, the local scaling exponent g„(p)of
the corresponding spectrum has a minimum of g„(p;„)= 0.45 at p;„=(10') ' and a maximum of
g„(p„)= 0.77 at p „=8L '. A physical argument starting from the constant energy flux in p space
reveals the general mechanism underlying the energy pileups at both ends of the p-space scaling range.
In the case studied here, they are induced by viscous dissipation and the reduced spectral strength on
the scale of the system size, respectively.

PACS numbers: 47.27.—i, 47.10.+g

In nonlinear dynamics scaling exponents in r space
and p space are often identified with each other. In
the case of fully developed turbulence the scaling ex-
ponent g„2 of the velocity structure function Dl2)(r) =
([u(x + r) —u(x)] ) ~ rt"' is believed to coincide with
the scaling exponent g„2of the energy spectrum of the
velocity field (multiplied by p), E(p) ~ p &~' '. In this
Letter we demonstrate that this identification only holds in
the limit of a very large Reynolds number. For (Taylor-)
Reynolds numbers Re& ~ 200 typically achieved in full
numerical simulations [1] bottleneck phenomena [2] lead
to considerable differences between g„q and g„2. First,
for large p near the (inverse) scale of dissipation, the bot-
tleneck effect accounts for the puzzling observation that
the numerical spectrum is clearly Patter both in experi-
ment [3,4] and in numerics [1,5] than E(p) ~ p I in-
stead of being steeper as expected from the possibility of
intermittency corrections. Second, for small p near the in-
verse external length scale L ' (where L is defined by the
driving force), a similar bottleneck effect leads to steeper
spectra. This is another hint that finite size effects as also
found and analyzed in [6—9) have to be considered. Our
observation has far-reaching consequences for both the
numerical and experimental determination of asymptotic
scaling exponents from spectra.

We first focus on the crossover between viscous sub-
range (VSR) and inertial subrange (ISR) and start from
Benzi et al. 's [10] measured longitudinal [11] velocity
structure function, assuming that the system size L
[10],i.e. , no large scale finite size effects [6,12] are con-
sidered. Benzi et al. [10]analyzed various numerical and
experimental data by means of the extended self-similarity
method [10,13] and found that for r ) il (ti being the
Kolmogorov scale) the mth longitudinal velocity structure

function DL (r) obeys DL (r) = C [rf(r/rt)]&"", with a(m) (m)

universal function f(r/rt) for all moments m, for all Req,
and for all kinds of isotropic flow. We restrict ourselves
to the second order structure functions and drop the in-
dex 2 in what follows.

is slightly superior to that of Dt(r); see Fig. 1. Here,
denotes the asymptotic value of g„ for r

and v„and b are the Kolmogorov velocity and Kol-
mogorov constant [11], respectively. The experimental
value f(r = il) = 8.577 X 10 3 = f(1) determines b =
11/45[ f(1)] = 5.834, slightly smaller than b = 6.0—
8.4 found in older experiments, which also show excel-
lent agreement with (1) [11,16]. We determine D(r) from
a spline fit to the data and compare the result with the
Batchelor parametrization (1) in Fig. 1. There are no vis-
ible deviations.

The local logarithmic slope [6] of Eq. (1),

d lnD(r)
g r = 2—

d lnr
(2 —g)r

2
rd + r

is monotonically decreasing for increasing r. Here, rd =
2

(3b) ti (for g = ~) determines the r-space crossover,
defined by equating the limits for large and small r of
Eq (1). (

Next, we calculate the spectrum E(p) which is, when
neglecting boundary terms, given by [11,12]

l
E(p) =-

2m
pr sin(pr)D(r) dr .

The structure functions Dt (r) and D(r) are connected
by [11] D(r) = 3Dt (r) + Dt (r)d InDt (r)/d lnr. Both
functions can be fitted by parametrizations of the Batch-
elor type [11,14]. Originally given by Batchelor as a
parametrization, this formula (1) recently got theoretical
support by Sirovich, Smith, and Yakhot [8], who, more-
over, find agreement between the Batchelor energy spec-
trum and numerical spectra [1,15] for 30 orders of mag-
nitude. The high quality of the Batchelor fit has also
been established by older experiments; for an overview,
see [11,16]. Here, the Batchelor fit for D(r),

D(r) r2/3Ti2

[1 + (1/3b)3/2 (r/il)2]& tl2
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FIG. 1. Velocity structure function D(r), calculated from
Benzi et al. 's data (dashed) [1], and its Batchelor fit (1) (solid)
for g = —. Both curves are identical, which can even be seen
in the enlargement of the crossover. The dotted line shows a
structure function corresponding to the spectrum (6). The upper
right part shows the saturation of the structure function (9),
dashed. In the inset the longitudinal structure function DL(r) is
shown. The original data [1] are diamonds, the dashed line is
a spline fit of these data, the solid line a fit of Batchelor type.
Slight differences are seen.

prd'U„d exp(iprdx)
dx

1277 rl2 dp3 (I + x )

r 32- i+&/2~2
—1/2 —&/2 g

3/2~ I (I —g/2) q2

&(p) =—

+P '/' "'I:1/2+r/2(P)] (4)

Here, P = prd = p/pd and K„(p)is the modified Bessel
function [17]. A similar Fourier transformation of the lon-
gitudinal structure function was performed by Sirovich,
Smith, and Yakhot [8]. [When the transcriptional error
in Eq. (20) of Ref. [8] is corrected, the bottleneck pileup
also shows up. ] Expanding Eq. (4) for small P ( 1 and

g ) 0 gives

In view of our results in Fig. 1 we feel justified to consider
Eq. (1) as an exact description of the experimental struc-
ture function of Ref. [10]. Inserting Eq. (1) into Eq. (3)
we obtain

FIG. 2. Experimental energy spectrum Eq. (4) (solid) with
and Eq. (6) (dashed) without the energy pileup. In

the left part the spectrum according to (10) is shown. In the
insets, the spectrum is enlarged around the energy pileups and
compared to classical —5/3 scaling.

F-(p) = C~„I'(3/2 + g/2)
I (I —g/2)

XP &' I+ P2+ . , (5)
2&(I + C)

i.e., we have a positive correction term to the ex-
pected asymptotic scaling E(p) ~ p & '. This correc-
tion signals the onset of an energy pileup around pd,
see Fig. 2. For large p » 1 the spectrum decays as
p(p) ~ p

' &/2 exp( —p). Figure 2 also shows a frequently
used parametrization [18] for E(p),

Z(p) = cp ' 'exp( —p/p„'),

where pd is chosen in such a way that the r-space
crossover rd corresponding to Eq. (6) coincides with rd,
for details see Ref. [12]. This comparison emphasizes
the energy pileup around pd described by the (modified)
Sirovich-Smith-Yakhot formula, Eq. (4), which can be
considered to an experimental spectrum summarizing the
various simulations and experiments of Ref. [10] and also
those summarized in [16].

As already stated above, the energy pileup leads to a

!

nonmonotonous local slope

d inE(p) [ C(I + g)p P ] l3t2/+ t2/( p)+ (2 C)p Itl/2+i/2(p)
d lnp

= —Ct(p) —I =
gP 1~3/2+i'/2(P) + P +1 2/+i2/( )P

For g = —, the maximum local slope is —1.448 (instead of
—5/3) and occurs at p;„=0.85pd = (1021) '. Figure 3
shows g„(p) together with f, (r = 1/p) from Eq. (2),
demonstrating the strikingly different behavior of the local
slopes in r and in p space.

The energy pileup around pd has also been observed
in further experiments [3] [fitted by a correction term

~ p2/3 instead of our p, cf. Eq. (5)], in full numerical
simulations [1,5], and in a reduced wave vector set
approximation (REWA) of the Navier-Stokes equations
[7]. In Ref. [7] a correction term +2(p/p~„k)' was
fitted to the data in nice agreement with our present
result, +3P /5 = +2.6(p/p~„k), where p~„k is the
point of maximum energy dissipation. Falkovich [2]
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Ref. [19]; see also [20]. For an analogous phenomenon
in temperature spectra see [21].

Formally the bottleneck phenomenon refIects the rela-
tively sharp crossover from r2 scaling (VSR) to r~ scaling
(ISR) in the structure function (1). To illustrate this we
transform the spectrum (6) back to r space. This spec-
trum does not show the bottleneck phenomenon, and the
corresponding structure function

D(r) = 4cl (—g)
g+t (pdr(s + 1)

r(g + 1)pd

(1 + p„' r )
~+' sin[(g + l)arctan(pdr)])

(8)

FIG. 3. The local p-space scaling exponents g„(p) from
Eqs. (7) and (10) (solid), and the local r-space exponent
f„(rpd = I/P) from Eqs. (2) and (9) (dashed). The inset shows
the averaged p-space scaling exponent gi'"~(Re~); see Eq. (11)
(solid). Also shown is the local p-space scaling exponent

j/(pz(Re~)), dashed. We chose g = — throughout. The dots
are the experimental [5] gi"o(Re~). In [5] only g„'"~(Re) is
given, so we calcUlated Re& = cRe'/ with c = 0.17 chosen to
give agreement for small Re&.

introduced the name "bottleneck phenomenon" for the
energy pileup and predicts the correction term to be" (p/pd)' '/»(pdlp).

We offer the following physical explanation (al-
ready given in [7]) of the bottleneck phenome-
non: Consider the turbulent energy transfer downscale,
T(p) —pu(p) f dpi dp2 u(pt)u(p2)6(p+pi + p2), which
does not depend on p in the inertial range due to Kol-
mogorov's structure equation [11]. Assume that the
amplitudes u(pi), u(p2) with pi, p2 ) pd ) p are already
damped by viscosity. Then the energy transfer T(p)
would be reduced, and stationarity could not be achieved
unless u(p) increases. Because of the locality of the
Navier-Stokes interaction in p space, the effect is strongest
around pd, leading to the energy pileup. Of course there is
also viscous damping, but for p ( pd ( g ' it is smaller
than the eddy viscosity T(p) [2]. Borue and Orszag's
simulations [5] indeed show that the pileup starts in a re-
gion where T(p) is still constant. The above explanation
rules out spectra of type (6). For an explanation of the
bottleneck effect within the test field model we refer to

differs from the Batchelor parametrization (1) by its
considerably smoother transition (see the dotted curve in
Fig. 1, showing a ratio of =1.8 around rd).

Our explanation suggests that the bottleneck effect
potentially accompanies any sudden change in spectra
strength, provided the wave vector amplitudes interact
nonlinearly and a conserved Aux exits. We are conse-
quently led to expect a similar effect at the infrared end of
the scaling regime where the small-p modes are reduced
in their spectra strength by the finite system size.

Let us therefore consider the crossover between ISR
and the large r saturation domain, where D(r) = 2(u ) =
6ui, becomes constant. Recall that L = 1/pz is the
forcing scale. From experimental data [10,11,16] we
conclude that the second crossover at r = L is again well
described by a Batchelor type transition,

D(r) = 2(u )r (r + r )
' (L + r )

see Fig. 1. [This crossover is probably nonuniversal.
The important point here is simply the reduced spectral
strength for small p, induced by the finite size, i.e.,

&(p) ~ 0 as p ~ 0.] The general mechanism outlined
above should apply equally well in this regime: The
velocity amplitudes of the modes pi, pz ( pz ( p (or
either of them) are reduced because of the finite size of
the system. The mode u(p) again has to increase in order
to guarantee a p-independent energy Aux, now resulting
in a steeper spectrum.

Indeed, we find such a behavior for the spectrum
corresponding to (9). For rd « r we derive the analytical
result (for g = 3)

&(p) = (u~)L

7T 1 4 3 p2 2 7 5 p2
+ I ]F2 2 + P )F22 3 ' 3' '2' 4 27 ' 3 2 4

(10)

where p = p/pz and i F2(a, b, c, z) denotes a generalized hypergeometric function [17]. The spectrum and the
corresponding g~(p) are shown in the left parts of Figs. 2 and 3, respectively. We find p „=8pz and g(p,„)= 0.77.
Thus the deviations from classical scaling are again much larger than the discussed intermittency corrections. Note that
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our result agrees with theoretical [6,9] and experimental
hints (summarized in [9]) that the spectra are steeper for
small p.

We finally calculate the effective scaling exponent
g('tt)(Re&) that will be measured in p-space simulations.
Here we only consider the bottleneck phenomenon for
large p, as in most numerical schemes the smallest wave
vectors are forced and no p ( pL are included. Let us
express rd in terms of I. and the Taylor-Reynolds number
Re& = Au&, m, /v, where A = u&,~, /(ci&u&), , is the Taylor
length. We have e = c,ui„,/L with c, = (6/b)3t~ = 1,
which is also known from grid turbulence experiments
[22]. On the other hand, e = 15v(c3iu&)„, [11]. Using

these relations we Anally get g = 153/ c, 'LRe& or
—3/2

2 3 4
—3/2

(for f = 3) rd = (3b) rt = 63LReq . This connection
between rd/L and Req allows us to calculate g(' )(Req) as
the average

1 P ruin

(eff) gp(p) d lnp,

*On leave of absence from Fachbereich Physik, Univer-
sitat Marburg, Renthof 6, D-35032 Marburg, Germany.

~Present address: C.E.A. , Service de Physique de l'Etat
Condense, Centre d'Etudes de Saclay, 91191 Gif sur
Yvette Cedex, France.

(Re~) (11)
Pmin PL pL

where p;„is, as above, the wave vector of minimal

gp(p). The function g(")(Req) is shown in the inset
of Fig. 3. The deviations from the asymptotic value

2g„'' (Req ~ ~) = g are large. Assuming g = 3, even for
the largest Re~ = 200 achieved in numerical simulations
[1] we have g('tt) = 0.58, which very well agrees with
what is observed in numerical simulations [1]. Impressive
experimental confirmation of our prediction follows from
recent measurements by Zocchi et al. [4]. We include
their data for g("')(Req) in our figure.

Let us finally remark that our physical explanation of
the bottleneck energy pileups is very general; it only
assumes some inertial range with a constant energy flux in

p space. For example, these conditions hold for surface
or capillary waves [23], where bottleneck phenomena are
also expected [2], or for Kuramoto-Sivashinsky dynamics
[24]. How bottleneck phenomena manifest themselves in
higher order moments and in power spectra remains a
question for further research.
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