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Order-Disorder Phase Transition and Critical Slowing Down in Photorefractive Self-Oscillators
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We study self-oscillation in a photorefractive double phase-conjugate mirror and show that it
undergoes an order-disorder phase transition at a critical gain-threshold point. We present theoretical
and experimental results on two key properties of this phase transition: critical slowing down and the
characteristic order parameter. We show that the correlation distance of the refractive index variation
responsible for the double phase conjugation changes abruptly from very small values (disorder, below
threshold) to a large unique value (order, above threshold) determined primarily by the boundary
conditions. Finally, we point out similarities and important differences between this combined light
and matter phase transition and the mean field and Ginzburg-Landau theories.
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Phase transitions have been studied extensively over the
past decades. Two of their characteristic properties are
critical slowing down at a critical point and large change
in an order parameter as the system goes through that
point [1]. These effects are observed in ferromagnets,
in ferroelectric materials, and in many other systems
that change their actual structure (ordering) at a specific
critical point [2] (phase transition, Curie temperature,
etc.). Lasers go through a critical point at the threshold
and exhibit the features characteristic of phase transitions
[3,4). Critical slowing down is also observed in bistable
optical resonators [5,6].

Theoretically, some nonlinear wave-mixing processes
are also expected to exhibit critical slowing down. Non-
linear self-oscillation, which can be obtained at suf-
ficiently large nonlinear gain (coupling strength times
interaction length) levels, is a good candidate for such
an observation. For example, consider degenerate four-
wave mixing [7], where two counterpropagating optical
("pump'*) beams interact in a nonlinear crystal with a
third ("probe*') beam. A fourth ("signal" ) beam, which
is a phase-conjugate replica of the probe, is gener-
ated in the medium through the nonlinear process. The
probe beam is amplified and the phase-conjugate signal
is generated simultaneously (both at the expense of the

pumps). At a very high gain level, both signal and
probe beams are emitted even in the absence of an input
probe beam [7]. The behavior at this point is called self-
oscillation.

In this Letter we analyze a specific example of non-
linear self-oscillation, the photorefractive double phase-
conjugate mirror (DPCM), and show that it exhibits a
phase transition at the critical point of self-oscillation. We
observe that both the nonlinear medium and the phases
of the participating waves go from disorder below the
critical point to order above it. The order parameter is
associated with phase-conjugate reAectivity, and the cor-

relation distance is associated both with the period of the
nonlinear perturbation in the refractive index and with the
bandwidth (temporal and angular) of the scattered waves.
We describe experimental observations of these phase-
transition effects associated with nonlinear self-oscillation
[8]. We study these effects in a photorefractive self-
oscillator, since high gain levels can be obtained and
controlled in a relatively accurate manner. Our analy-
sis, however, is general and can be straightforwardly ex-
tended to include all photorefractive self-oscillators, and,
with some modifications, all nonlinear (electromagnetic)
self-oscillators.

The double phase-conjugate mirror [9] consists of a
photorefractive crystal where two mutually incoherent in-

put beams indirectly interact and emerge as phase conju-
gates of each other (i.e., the beams exchange amplitude
and inverted phase profiles). As the DPCM develops, the
input beams fan and at the same time scatter from each
other's fanning gratings. This process proceeds most ef-
ficiently if the beams diffract everywhere from a set of
shared gratings, which is possible only if the beams are
phase conjugates of each other throughout the entire vol-
ume [10]. Therefore, a selection mechanism in which
common gratings are enhanced and nonoverlapping grat-
ings are suppressed governs the evolution. Eventually,
if the gain (average coupling coefficient times interac-
tion length) is large enough, the interaction stabilizes in
a double phase-conjugation form. Recently, we presented
a theoretical model for the evolution of the DPCM and
showed how it evolves from two arbitrary input beams
and randomly scattered noise [11,12]. We predicted the
existence of a fidelity threshold for the double-conjugation
process and established the self-oscillatory behavior of
the DPCM. Later, we presented experimental observa-
tions demonstrating the existence of such a fidelity thresh-
old that depends on the feature size in the conjugated
images [13].
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For understanding the self-oscillatory behavior and the
critical slowing down, it is useful to recall the time-
dependent one-dimensional analysis of the DPCM [9,14],
which treats it as a four (plane) wave-mixing problem, in

the configuration described in the inset of Fig. 1. The
coupled equations for the complex amplitudes A;(z, t)
(i = 1, 2, 3, 4) of the interacting waves are
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FIG. 1. The experimental setup. Inset: The DPCM configu-
ration.

1744

BA3 BA4
ikb n—A2, = —ikhnA*, , (1)

where k = 27r/A is the wave number, A is the wavelength
in vacuum, and An(z) is the perturbation in the refractive
index. These coupled wave equations are supplemented

by an equation for the index perturbation

BAn + b, n = (y/Ir) (A)A4 + A2A3), (2)

where Ir = g, , ~A, ~
is the sum of the wave intensities,

the response time ~ is inversely proportional to IT, and y
is the nonlinear coupling coefficient which is imaginary
in PR materials without external or photovoltaic field,
thus enabling power exchange between beams [11].
The boundary and the initial conditions for Eqs. (1) are

A2(z, O) = A2(L, t) = A2;„,A4(z, O) = A4(0, t) = A4;„, and

An(z, O) = 0 (where L is the length of the crystal). For
simplicity, we consider here only the symmetric case
of ~A2,„~ = ~A4;„(, which is also the case of lowest
threshold [9,12,13]. Since this 1D model cannot account
for interaction with non-phase-matched (spatial) noise
(that initiates the evolution of the DPCM [11]),it is con-
venient to assume a small level of phase-matched seed e,
that is A~(0, t) = ~e A4(0, t) and A3(L, t) = ~e A2(L, t)
These equations were solved [9,14] and give the
steady-state results [9] for the symmetric phase con-
jugate reilectivity R = ~A&(L, t ~)/A2(L, t ~)

~

~A3(0, t ~)/A4(0, t ~)
~

= a, where a (real) is
related to y L by

a = tanh[ —a y L/2] = tanh[a y L/(y L),], (3)

in the limit e 0, and we identify the critical value

(yL), = —2. At and .above the critical value of gain a has
a finite value even in the absence of seeding noise (~ ~ 0).

The transient solution [14] (for a (( 1) gives the charac-
teristic time to reach steady state T = r/[yL —(yL), ].
These two properties indicate self-oscillation (R ) 0
for s ~ 0) and critical slowing down [T ~ ~ for
yL —(yL), ]

The similarity to other systems that undergo second-
order phase transitions is apparent from Eq. (3) which
is analogous to the familiar expression in, for example,
ferromagnetism [1,2]

M/M = tanh[MT&/M T] (4)

in the absence of external magnetic field, where M is
the magnetization, M is the magnetization when all
the spins are aligned, and T, Tg are the absolute and
the Curie temperatures, respectively. This expression is
obtained from the mean field theory, which treats the
spin configuration as a bistate system in the absence of
external magnetic field, and neglects all Fourier com-
ponents of the spin except the mean (zero, in fer-
romagnetism). It minimizes the free energy function
F = —T in[2 cosh(MTc/T)] + TcM~/2. Its distinct prop-
erty is that M is a continuous function of T every-
where (including at Tc), but its first derivative (which
provides information about the entropy of the system)
is discontinuous at T~. In the case of DPCM, the free
energy function is F = —(1/yL) ln[2cosh(ayL/yL, )] +
a~/yL, The .amplitude refiectivity a thus plays a role
analogous to that of the magnetization M and is the "order
parameter" of the system. The physical quantity which
becomes "ordered" at the phase transition is the index
An(z) which assumes the form hn = Anp sin(2rrz/A),
A = 2m/It p

= A/(2 sinO/2), where O is the angle be-
tween the two input beams. This corresponds to a "con-
densation" in K space from a "broadband" to a near
"monochromatic" behavior. For temperatures T above
Tc in ferromagnetism, or for gain levels below (yL),
for the DPCM, the system goes from order to disor-
der; that is, M and a vanish. To illustrate the equiv-
alence between self-oscillation and second-order phase
transition, we plot in Fig. 2(a) the two most distinct,
common properties: the dependencies of the refIectivity
R and the response time ~ on the inverse of the gain
1/yL. The phase-transition behavior is manifested in
the discontinuity of the first derivative of R with re-
spect to 1/yL and in the divergence of r, both at (yL),
An interesting point is the correspondence between the
external magnetic field (H) in ferromagnetism and the
noise seed level (g), both taken to zero in the limit of
T Tc [or yL (yL), ] in the mean field theory.

Our two-dimensional analysis [11,12] goes beyond
mean field theory. It considers other possible Fourier
components of the gratings, and in this sense is equivalent
to the Ginzburg-Landau [1] theory of spin fluctuations.
In the 1D model, the order parameter (a) represents the
contribution of one single grating component Kp (all
others are neglected), and we examine its growth as a
function of gain. In the 2D case one may look at the
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FIG. 2. (a) Numerical results of the lD theory for the
refiectivity (order parameter) and the time response, as a
function of 1/gain. (b) Numerical results of the 2D theory:
the spatial spectrum of one of the output beams below (right)
and above (left) the threshold.

equivalent of "spin correlations. " In the DPCM both
the spectrum of the optical field and the spectrum of the
refractive index perturbation show correlation effects.
The field and the index are related: the narrower the spec-
tral width of An, the smaller the allowed deviation from
phase matching (Bragg condition). Figure 2(b) shows the
spatial spectrum of one of the output beams below and
above the critical point, as calculated from the 2D theory
[11,12]. Below threshold multiple gratings coexist and
the angular spectrum of the beam is broad (fanning), while
above the threshold the preferential grating Ko dominates,
with only a small width associated with the features borne
on the conjugated beam. This indicates a transition from
disorder (broad spectral contents, low Bragg selectivity) to
order (one dominant rating component, high selectivity).

We now present experimental results that illustrate the
order-disorder phase transition. We use the setup shown
in Fig. 1: a multimode 488-nm Ar-ion laser beam with
a 3-cm coherence length passes through a spatial filter
(SF) and is split by a beam splitter (BS) into two beams,
which intersect in a photorefractive BaTi03 crystal. In
each arm we place a transparency T (Air Force resolution
chart), followed by another beam splitter (BS), a lens (L),
and a half-wave plate. In one of the arms we insert a
variable attenuator (VA). The phase conjugate refiections
are collected by charge coupled device (CCD) cameras
and detectors (D) from the beam splitters in each arm
(the camera or detector system for the left arm is not
shown in Fig. 1). Care is taken to assure that the beams
are mutually incoherent at the crystal plane (the optical
path difference between the arms is much larger than the

coherence length). To facilitate an accurate control of
the gain in the beams, it is essential to place the crystal
between the image and the focal planes of the Air Force
resolution chart so that the transverse intensity distribution
in the crystal is nearly uniform [13]. The beams are nearly
counterpropagating (172 ) so that they fully overlap in the
nonlinear crystal. In controlling the photorefractive gain,
we recall [13] that additional illumination, incoherent with
both interacting beams, reduces the modulation depth of
the interference gratings and, consequently, decreases the
resultant perturbation in the refractive index. Since in
the current experiment we measure time response, it is
essential to maintain the total illumination intensity at a
constant value and as uniform as possible across the entire
crystal. Since in BaTi03 the PR coupling is large for
extraordinarily polarized light and negligible for ordinary
polarization, we control the coupling by varying the
polarization of the interacting beams. Thus, the ordinarily
polarized portion of each beam serves as an erasure beam.
Extraordinary polarization provides the highest gain, and
ordinary polarization yields minimal gain. The coefficient
y may be expressed [13] as a function of the angle P of
the polarization of the input beams

Yo Yo

1 + I„g/I,„, 1 + tan~/ '

where @ = 0 corresponds to maximum gain (extraordi-
nary polarization), and I,„,and I„dare the sums of the
intensities of the extraordinarily and ordinarily polarized
beams, respectively. Note that the ordinarily polarized
beams do not interact with each other or with the ex-
traordinarily polarized beams, while the extraordinarily
polarized beams form the DPCM and transform into each
other's phase conjugates. This may result in a different
spatial (x and z) dependence of I„dand I„, Our choice.
for the interaction plane and the small angle between the
beams minimizes this difference, and y can be well ap-
proximated as a function of P only, as in Eq. (5).

The experimental results are shown in Figs. 3 and 4.
First we concentrate on a specific spatial frequency within
the image. We block (using an aperture) the phase con-
jugate reflection of the entire image except for that of
3 bars (1.26 line pairs/mm). The phase-conjugate refiec-
tivity R (normalized to its maximal value of 30%) and the
response time in minutes as a function of gain are shown

by the triangles and circles in Fig. 3. The response time
reaches its maximal value exactly at the critical point of
the refiectivity curve [(yL), = —2.06]. The ratio between
the response times at the threshold and at the highest gain
is about 10. When the aperture is removed and the en-
tire phase conjugate image is captured, we notice two ef-
fects. The first is the shift in the threshold value (which
is also the gain value at the peak of the response time)
toward higher gain levels for the whole phase-conjugate
image. This is in accordance with our previous results
[13] that show higher gain-threshold values for higher
spatial frequencies. The second is the broadening of the
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FIG. 3. Experimental results of the phase-conjugate reAectiv-
ity and time response as a function of gain for a single reso-
lution image (1.26 line pairs/mm). The curves are a guide to
the eye.

response time curve (for the whole image). This is a con-
sequence of the different resolutions of the features incor-
porated in the Air Force resolution chart. Each spatial
frequency in the image has a slightly different threshold,
and consequently the response time averages and results
in a slightly broader curve than in the single-resolution
measurement.

To illustrate the change in the correlation distance
when the DPCM goes through its threshold, we show
in Fig. 4 experimental results (photographs, right column;
profiles, left column) of the angular spectrum (far field)
of one of the output beams below (upper sections) and
above (lower sections) the transition point (threshold).
It is evident that the spectrum narrows practically to a
single Fourier component, broadened only by the pictorial
information borne on the input beam. The behavior of the
reAectivity, the response time, and the angular spectrum
at the threshold are conclusive experimental evidence of a
second-order phase transition.

Finally, we point out that the major difference between
the nonlinear self-oscillator and other systems that undergo
a phase transition is in the correlation distance. In all
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FIG. 4. Experimental results of the angular spectrum (far
field) of one of the output beams below (upper section) and
above (lower section) the transition point (threshold). The
intensity of the small features in the upper right photograph
is much smaller than the single (phase-conjugate) peak in the
lower right photograph.
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other phase transitions of which we are aware, the average
Fourier component (or the mean value of the spin config-
uration [2], o.o, or Ko for the DPCM) is a given property
of the system I.n the self-oscillator case, it is given by
the boundary conditions and is controlled by the angle be-
tween the input beams. Also our analysis can be readily
extended to all photorefractive self-oscillators, which we
believe all undergo a phase transition at their threshold.
Furthermore, it is very likely that nonlinear self-oscillators
that stem from other types of nonlinearities (for example, a
Kerr self-oscillator [7]) also undergo a similar phase tran-
sition, since our treatment is rather general and does not
require a specific form of the nonlinearity.

In conclusion, we have shown that photorefractive self-
oscillation processes exhibit features of an order-disorder
phase transition, and presented experimental observations
of critical slowing down and correlation effects at the
transition (threshold) point.
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