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Kink Propagation in a Highly Discrete System: Observation of Phase Locking to Linear Waves
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We report the first observation of phase locking between a kink propagating in a highly discrete
system and the linear waves excited in its wake. The current-voltage (I V) cha-racteristics of discrete
rings of Josephson junctions have been measured. Resonant steps appear in the I-V curve, due to phase
locking between a propagating vortex and its induced radiation. Unexpectedly, mode numbers outside
the first Brillouin zone are physically relevant, due to the nonlinearity of the system.

PACS numbers: 74.50.+r, 05.45.+b, 74.40.+k

The discrete sine-Gordon equation governs the dynam-
ics of many physical systems, such as dislocations, chains
of coupled pendula, magnetic and ferroelectric domain
walls, and arrays of Josephson junctions. Unlike the con-
tinuous sine-Gordon equation [1], very little is known
about the dynamics of the discrete sine-Gordon equation.
It appears that an essential feature introduced by discrete-
ness is the generation of radiation by a moving kink.
Early simulations by Cume et al. [2] showed that when
a kink propagates in a highly discrete one-dimensional
(1D) lattice, it excites small-amplitude linear waves in its
wake. This effect was explained analytically by Peyrard
and Kruskal [3], who also found that in the absence of
external driving, kinks propagate preferentially at a par-
ticular set of velocities. Recently, in simulations of a dis-
crete ring of underdamped Josephson junctions, Ustinov
et al. [4] found that vortices circulating around the ring
can become phase locked with their induced radiation; the
predicted signature of this effect is a series of novel reso-
nance steps in the current-voltage (I-V) curve.

In this Letter, we report the first observation of
phase locking between a vortex circulating in a discrete
Josephson ring and the radiation excited in its wake. To
the best of our knowledge, our measurements also provide
the first (indirect) experimental evidence for the predicted
generation of linear waves by a kink propagating in a
highly discrete system [2,3]. Our experimental findings
are in quantitative agreement with the predictions of a
discrete sine-Gordon model [4]. This close agreement
suggests that the -Josephson rings studied here are promis-
ing systems for future investigations of nonlinear wave
propagation in discrete lattices.

Figure 1 shows a schematic drawing of our discrete
Josephson ring. The system is governed by the discrete
sine-Gordon equation,

+ @; + sin@; = AJV @; + —', (1)

for i = 1, . . . , N. Here P; is the phase difference across
the ith junction, N is the number of junctions, V @; =

@;+~ —2@; + P; ~ is the discrete Laplacian, and the
overdots denote differentiation with respect to time. The
discreteness parameter AJ is defined as A 1 LJ/L„
where LJ = 4 o/2m I, is the Josephson inductance, 40 is
the Aux quantum, I, is the junction critical current, and
Z., is the self-inductance of a single cell. Measured in
cell spacings, the penetration depth for the current and
field distributions is AJ. The junction plasma frequency
co„= 1/QLJ C, where C is the junction capacitance. The
damping parameter I is the reciprocal of the square root
of the Stewart-McCumber parameter P, The last term
is the applied current at node i, normalized to I, The
boundary condition is P;+z = P; + 2vrM, where M is
the number of vortices (fiuxons) trapped in the ring.

The rings used in our experiments consist of N = 8
high-quality Nb-A12-0 -Nb junctions and are fabricated
with a four mask selective-niobium-anodization process
at AT8zT Bell Laboratories and MIT Lincoln Labora-

FIG. l. Schematic drawing of a discrete ring of 8 Josephson
junctions.
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FIG. 2. Experimental I-V curves corresponding to the five
possible situations with M vortices trapped in a Josephson ring
of 8 junctions. Measured parameters: AJ2 = 4.0, P,.(R„) = 33.
Inset: voltage position of the steps (normalized to Vo) vs wave
number kMp. Curve is a fit by Eq. (2) with Vo = 0.25 mV.

tory. The outer diameter of the ring is 48 p, m and the
Josephson junctions have areas of 2 p, m . The junc-
tion capacitance C = 95 fF [5], so that charging effects
are negligible. The normal-state array resistance R, ,„„,y
is measured just below the niobium critical tempera-
ture T, . The junction normal-state resistance is then as-
sumed to be R, = NR y The junction critical current
1,(T) follows the Ambegaokar-Baratoff temperature de-
pendence with 1,(0)R„= 1.9 mV. For the temperatures
of interest, our junctions are underdamped, i.e., P,.(R„) =
2vrI, R2C/&Po » 1. As illustrated in Fig. 1, the transport
current is applied to a single node of the array and ex-
tracted from the inner island, while at the same time
the voltage can be measured across the outer and inner
niobium islands. Arrays are measured in a He probe
with standard equipment. At room temperature the leads
are filtered with radio-frequency-interference filters with
a cutoff frequency of 10 kHz. Inside the vacuum can, a
small magnet produces a magnetic field perpendicular to
the array.

Figure 2 plots typical I-V curves for rings cooled down
in different applied magnetic fields. Cooling down in a
field of about M flux quanta 40 corresponds to trapping
exactly M vortices in the ring. When the ring is cooled
through T, in zero field, the I-V curve shows a depinning
current and jumps to the gap voltage at 0.84NI, . With
M = 1 applied to the ring, the depinning current vanishes
and a current step appears near V = 0.2 mV. The jump
to the gap voltage now occurs at I „=0.55NI, . For
M = 2, 3, and 4, the voltage position of the steps
increases to about 0.35, 0.43, and 0.48 mV, respectively.
On the other hand, the I-V curves for 5+0, 64 (), 74 0, and
840 are identical to those when cooling down with 3+0,
240, 140, and 040. Thus, a total of four different peaks
can be observed in our ring of 8 junctions. This result has
been reproduced in experiments on several other rings.

The absence of a depinning current for M = 1 (Fig. 2)
agrees with calculations [6] which show that the energy
barrier for propagation of a single vortex is negligible
if AJ ) l. The M = 4 curve exhibits a small depin-
ning current, indicating that interactions among the four
trapped vortices start to play a role. Figure 2 also shows
that I,„ increases with M. This increase has been pre-
dicted by Marcus and Imry [7]. Their analysis indicates
that the jump to the gap voltage occurs when the cur-
rent reaches the I-V curve of a single resistively shunted
Josephson junction with critical current Nl, In particular,
this predicts that for continuous rings I,„should always
exceed NI, Their preliminary results on discrete arrays
[7], however, show upper-current thresholds significantly
lower than NI, . This is consistent with our experimental
data, as well as with our simulations of Eq. (1). We find
numerically that I,„decreases when the system becomes
more underdamped and that I,„ in the simulations differs
by less than 15% from the measured value.

In contrast to the experiments on continuous Josephson
rings [8,9], the voltages of the steps shown in Fig. 2
are not proportional to M. We have performed [5]
a linear analysis (AJ » 1) of 1D parallel arrays with
free boundaries. In such a system, resonances occur at
voltages determined by the dispersion relation cu(k) of a
1D discrete, linear transmission line of inductances L,. and
capacitances C. A similar analysis for a ring geometry
with lattice spacing of p yields that the resonant voltage
peaks VM are given by

VM/Vo = 21»n(kM p/2) I,

where the wave number kM = 2' M/Np, with
M = —N/2, . . . ,

—1, 0, 1, . . . , N/2, and where Vo =
4o/2+. QL, C. This equation indicates that, in an N = 8
system, one only expects to see four different resonant
peaks in accordance with our experimental observation.

In the inset of Fig. 2, we plot the voltage position of the
resonances as a function of k~ p. The solid line is Eq. (2)
with fitting parameter Vo = 0.25 mV indicating that L,. =
18.5 pH, a reasonable value for our geometry. The two
data points near the Brillouin zone edge (kMp = zr) are
somewhat lower than predicted by Eq. (2), due to mutual-
inductance interactions between cells in the ring [5].

In the experiment, we find that the I-V curves are smooth
only for high AJ values; when AJ is decreased by lowering
the temperature, fine structure becomes visible. At the
same time the maximum voltage predicted by Eq. (2) is
not reached. These observations are consequences of the
nonlinear dynamics in discrete arrays. Figure 3 shows
the fine structure in the current-voltage characteristic of a
single vortex (M = 1) trapped in the ring for A~ = 2.2. In
total, six resonant steps are present, corresponding to local
minima in the differential resistance dV /dl.

To clarify the physical origin of the resonances, it
is helpful to recall a mechanical analog of the system.
The discrete sine-Gordon equation (1) may be viewed

175



VOLUME 74, NUMBER 1 PHYS ICAL REVIEW LETTERS 2 JANUARY 1995

0.4
1.0

03- E

05

0.02

0.2— 0.01-

0.1
V/dI

0.0
0.0 0.5

/v,
1.0

0.00
0.0

. ..""m=15
I

0.1

/V,

1

0.2

FIG. 3. Experimental I-V curve for one vortex trapped in the
ring measured at 6.4 K, where A~~ = 2.2 and P,.(R„) = 61. The
solid line shows dV/dl; note six dips corresponding to six
resonant steps in the I-V curve. Inset: voltage position of these
six steps vs mode number m. Curve is a fit by Eq. (3) with
AJ~ = 2.2.

as the equation of motion for a ring of N pendula,
each of which is viscously damped, driven by a constant
torque, and coupled to its nearest neighbors by torsional
springs. A vortex corresponds to a kink traveling around
the ring. In this configuration, a given pendulum hangs
almost straight down for much of the time, but when the
kink passes by, the pendulum overturns rapidly. Then,
because the pendulum is underdamped, it "rings" for
several oscillations. This ringing is the analog of the
radiation excited by the kink. A resonance occurs if
the pendulum rings precisely an integer number of times
between successive passages of the kink.

The voltages of the resonant steps can be predicted
from these considerations. The possible ringing frequen-
cies are the lattice eigenfrequencies of small oscillations
about the kink, and the circulation frequency of the kink
is proportional to the voltage position of the step. By
matching the circulation period to an integer multiple m

of ringing periods, the following formula is obtained for
the resonant voltages:

V 1= —[AJ + 4sin (7rm/N)]'/ . (3)
Up m

In the inset of Fig. 3, the drawn line is Eq. (3) with Vo =
0.25 mV. There is good agreement between the model
and our experiment.

A formula equivalent to Eq. (3) was first obtained in
Ref. [4], by matching the kink velocity to the phase veloc-
ity of the radiated waves. This condition is appropriate
because numerical simulations indicate that the radiation
is stationary in the frame of the moving kink; the linear
waves are phase locked to the kink, and together they
form a traveling wave. Two examples of such traveling
waves are given in the insets of Fig. 4, where P, (t) =
P(s ) is the traveling wave, g = jp —ut is the coordinate

FIG. 4. Numerical I Vcurve-for Eq. (1) with M = 1, N = 8,
I = 0.02, and AJ2 = 1. The mode number m of linear waves is
indicated below each step. Inset: traveling waves with m = 6
andm =9.

in the kink frame, and u is the kink velocity. The
integer m can now be visualized as the number of small
oscillations superimposed on the kink wave form, i.e., m

is the mode number of the linear waves.
Equation (3) has peculiar consequences. Ordinarily,

one expects that in a discrete ring of N junctions, only
N/2 steps are distinct, or perhaps N at most, as assumed
in [4]. But because Eq. (3) is not periodic in the mode
number m, the voltages V and V +~ are predicted to
be different for all m. Thus it seems that m can take
values outside the first Brillouin zone, up to m = ~,
at least in principle. To test this idea, we integrated
Eq. (1) numerically and generated I Vcurves. A-s in the
experiments, I was slowly swept up and down several
times, and for each I, the solution was allowed to
converge to an attractor. The existence of steps with m ~
N is confirmed by the I Vcurve show-n in Fig. 4 [10].
The mode numbers m, given at the base of the steps, were
determined by carefully examining the wave forms @,(t)
As shown in Fig. 4 (inset), a wave form with m = 9 small
oscillations can occur in a ring of N = 8 junctions. The
corresponding step lies between the m = 7 and m = 8
steps; this is expected from Eq. (3), which predicts that
V is nonmonotonic in m, and specifically that U9 lies
between V7 and Vq. The nonmonotonicity also explains
why the steps for m = 10, . . . , 14 are not visible in I ig. 4;
they are hidden under the stronger resonances for m =
7, . . . , 9, which occur at approximately the same positions.
The location of the next detectable step, corresponding to
m = 15, is well predicted by Eq. (3).

The physical relevance of mode numbers outside the
first Brillouin zone is readily understood in terms of
the pendulum analog. The integer m is the number
of times each pendulum oscillates between consecutive
sweeps of the circulating kink. This number can be
arbitrarily large, if the kink is moving sufficiently slowly
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(as it will be, near the bottom of the I V-curve). Of
course, in a linear discrete system, one cannot distinguish
between mode I and I + N; the difference is that
there is nothing analogous to a circulating kink in a
linear system. The rotation of the kink —an inherently
nonlinear phenomenon —provides the crucial reference
that allows one to discriminate mode m from m + X.

Our results suggest that 1D discrete Josephson rings
are not only promising model systems for the study of
nonlinear lattices, but also for future experiments on
ballistic and quantum vortices. On a resonant step, a
moving vortex couples to linear waves; further increases
of the current do not lead to further increases in the vortex
velocity, because the energy is consumed in amplifying
the linear waves. In this sense, the coupling to linear
waves can be viewed as an additional source of damping
for the vortex. Away from the resonant steps, the
loss mechanism is Ohmic dissipation in the junctions
crossed by the moving vortex. In underdamped tunnel
junctions this dissipation can be very small, indicating
nearly free propagation of vortices, especially if AJ ) 1,
where there is also a negligible barrier for vortex motion.
For example, we have estimated the mean free path
[11] in our samples to be about 15 circumferences at
4.2 K, and much larger in arrays with lower damping at
lower temperatures. Therefore, underdamped arrays with
AJ ~ 1 at low temperatures are in the appropriate regime
for studies of ballistic vortex motion [11], quantum
interference of vortices [12,13], and persistent motion of
vortices around a charge [14,15].
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