VOLUME 74, NUMBER 10

PHYSICAL REVIEW LETTERS

6 MARCH 1995

Phase Effect in Taming Nonautonomous Chaos by Weak Harmonic Perturbations

Zhilin Qu,' Gang Hu,' 3 Guojian Yang,! and Guangrong Qin'
'Department of Physics, Beijing Normal University, Beijing 100875, China
2CCAST(World Laboratory), P.O. Box 8730, Beijing 100080, China

3Institute of Theoretical Physics, Academia Sinica, Beijing 100080, China
(Received 9 May 1994)

An additional weak harmonic forcing is added to the Duffing equation, and its ability of suppressing

chaos is analyzed in the global parameter space.
two sinusoidal forces plays a very important role in suppressing chaos.

It is found that the phase difference between the

A new type of intermittency

characterized by periodic appearance of regular and chaotic motions, called the breathing effect in this
Letter, is observed when the two harmonic forces deviate slightly from resonance.

PACS numbers: 05.45.+b

Chaos is widely observed in nonlinear systems [1], and
this phenomenon is often undesirable in practice. The
main technique developed recently of controlling or elimi-
nating chaos is to stabilize one of the unstable periodic
orbits embedded in the chaotic attractor, which is referred
to as feedback control [2, 3]. Another procedure is to
perturb a system parameter by tiny sinusoidal perturbations
or to directly add a small external periodic forcing to
the chaotic system, which is identified as nonfeedback
control [4-11]. Feedback control seems to be efficient
but has some difficulties in practice. For instance, it is
often difficult in experiments to find the reference unstable
periodic states of the unperturbed systems. Moreover,
it is also difficult, sometimes, to determine the system
state variables which are required for feedback control,
because this requires complicated instrumental setups.
However, nonfeedback control can be very easily realized
in practical systems though the underlying dynamics is
still not so clear. Many works have been carried out,
by using nonfeedback control, in various chaotic systems
analytically [4,5], numerically [4-8], and experimentally
[9-11]. In this Letter, we also address the problem of
nonfeedback control of chaos by directly adding a weak
external forcing to the Duffing equation, as was done by
Braiman and Goldhirsch [6], i.e.,

x=y,
—vy — x> + Bcos(wt) + aBcos(Qr + @),

I

y
(1)

where we refer to Bcos(wt) as the driving force and
aBcos(Qr + ¢) as the external control forcing. When the
external control forcing is absent, i.e., @ = 0, the system
is in a chaotic state for a certain damping y and driving B
[12]. The object of applying the external control forcing
is to lead the system from this chaotic state to a nonchaotic
state. To our knowledge, most of the previous studies of
taming chaos by nonfeedback control in nonautonomous
systems simply set ¢ = 0 and did not investigate the
role played by the phase difference ¢». Here we fix y =
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0.3, w = 1, and Q) = 3w, while changing B, «, and ¢
to investigate the control efficiency of the external forcing.

In Fig. 1(a) we show the bifurcation diagram of
Egs. (1) without the external control forcing, i.e., a = 0.
The chaotic region ranges from B = 7.7 to B =~ 12.3
with a wide period-3 window in-between. All other
windows are very small and cannot be clearly seen
in our plot. Data in this figure and throughout the
presentation are taken on the surface x = Oandy <0
of the section, i.e., the surface of the section is located
on the negative y axis. Because there are a number of

_4‘r‘ | 1 | |

0.0 0.1 0.2 0.3 0.4
o

FIG. 1. Bifurcation diagrams of Egs. (1) with y = 0.3, w =
1, and ) = 3w (these parameters are fixed and all the data are
taken on the surface of the section located on the negative y
axis throughout all the plots of this paper). (a) Bifurcation
with respect to B without external control forcing (a = 0);
(b) Bifurcation with respect to @« when B = 8.85 and ¢ = 0.
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attractors coexisting for Egs. (1) in the parameter region
investigated here, we integrate Egs. (1) by employing the
conventional technique that the terminal point integrated
for the previous parameters is used as the starting point
for the sequential parameters, to keep the uniqueness of
the simulation result, and all the calculations were started
from the same initial point throughout. In Fig. 1(b),
we fix B = 8.85and ¢ = 0, and show the bifurcation
with respect to «. Here we only plot the small-a region
(e =04). We find that « is a relevant parameter for
bifurcation and chaos. An interesting point is that in
the small-a region the external control forcing sup-
presses chaos preferentially via inverse period-doubling
bifurcation. However, in order to reach the inverse
period-doubling bifurcation threshold one has to vary the
amplitude of the external control forcing to a large extent
(@ = 0.25), which is comparable with the changing of
B for pushing the system out of the chaotic region via
the inverse period-doubling bifurcation. This observa-
tion is rather disappointing in the sense of controlling
chaos: One has to apply a large external forcing to
remove chaos, while by changing B in the same extent
without the additional external control forcing, one can
also achieve the same purpose.

For controlling chaos one desires that external control
forcing with an amplitude very small in comparison with
that of the driving forcing should be able to bring the
system off the chaotic region. For this purpose, let us
examine how the phase difference ¢ of the two forces
influences the bifurcation of the system. We still fix B =
8.85, while taking a = 0.075, and show the bifurcation
diagram versus ¢ in Fig. 2(a). It is remarkable that ¢
plays a very important role in suppressing chaos. One
observes that a large phase area is dominated by periodic
states which connect chaos by period doubling and inverse
period doubling to the system. This observation indicates
that one can effectively suppress chaos by applying a
very weak external control forcing with a properly chosen
phase, or in other words, one can use the phase difference
of the two forcings to suppress chaos. We refer to this
kind of control as phase control of chaos. To have an
overview of the control ability of ¢, we fix a = 0.06,
and plot the periodic region (period 1, 2, and 4) in the
B-¢ plane [blank in Fig. 2(b)], which leaves the chaotic
region (of course, with periodic windows inside) [shaded
in Fig. 2(b)] by inverse period-doubling bifurcation. It
can be seen that, if one chooses a proper ¢, chaos can
be completely eliminated for the attractor (in the region
7 < B < 13) with a very small external control forcing.
This fact can be seen clearly in Fig. 2(c) where we
use @ = 0.075 and ¢ = 37 /2. One finds that only the
period-1 and period-2 states appear, and the whole chaotic
region for the attractor we investigate is wiped out for
7 < B < 13 by this perturbation.

To further demonstrate the effect of the phase differ-
ence in suppressing chaos, we plot Fig. 3 [with the same
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FIG. 2 (a) Bifurcation with respect to ¢ for B = 8.85
and a = 0.075; (b) Regular motion region (period 1, 2, and 4;
blank) and chaotic motion region (including the motions other
than period 1, 2, and 4, and including the periodic windows;
shaded) in B-¢ plane with « = 0.06; (c) Bifurcation with
respect to B as « = 0.075 and ¢ = 37 /2.

criterion as in Fig. 2(b)] in the B-a plane as follows. First
we fix ¢ = 0 and evaluate how « influences the bifurca-
tion of the system in the whole B-parameter region. The
shaded and the black regions are the chaotic regions in-
cluding the periodic windows, while the blank regions are
regular states which leave the shaded region by inverse
period-doubling bifurcation. Then we release the restric-
tion of fixing ¢ = 0, and change ¢ to obtain the min-
imum « for which the system leaves chaos by inverse
period doubling for a given B. The black region is the re-
gion uncontrollable even by changing ¢. It is remarkable
that the black region is considerably contracted from the
shaded region, and thus the threshold « of taming chaos
can be very much reduced when the phase difference is
taken into account.
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FIG. 3. Blank region corresponds to regular states, while
shaded and black regions are chaotic states and periodic
windows for the case of ¢ = 0. The black region is the
uncontrollable region even when phase difference ¢ is taken
into account. This figure is plotted in the same manner as
Fig. 2(Db).

Usually, it is very difficult to apply a second frequency
just satisfying the exact resonant condition to the first fre-
quency in experiments other than numerical simulations.
Very small deviations from resonance may inevitably ex-
ist. What will happen if the two frequencies deviate from
resonance slightly? To answer this practical question,
we assume ) = Qg + AQ with Q¢ = 3w and AQ very
small. This frequency difference is equivalent to introduc-
ing a time-dependent phase difference ¢(1) = ¢ + AQ1¢
in Egs. (1). In Fig. 4, we plot the time process of the
system at B = 8.85, a = 0.075, AQ = ﬁ, and ¢ = 0.
Data are obtained on the same surface of the section as
above. It is very interesting that in one time interval
the system moves regularly while in another time seg-
ment it moves chaotically, and after a time length 7 =
27r/AQ the motions are repeated. Therefore, we create a
new stable periodic state with period T = 27 /A which
includes both regular and chaotic motions in this time
interval. By a stable periodic state we mean that the
qualitative behavior repeats periodically with period T.
However, the trajectory of the system cannot be com-
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FIIG. 4. y versus time for B = 8.85,« = 0.075, and AQ) =

3000 *
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pletely repeated, even on the time scale 7, due to the
chaotic segments in the evolution process, and thus the
motion is not periodic. We identify this kind of motion
as a breather. The resemblance of Fig. 4 to Fig. 2(a) is
meaningful. Because A} < ) and the motion is qua-
sistatic, the bifurcation with respect to time in Fig. 4 may
well repeat the bifurcation with respect to ¢ in Fig. 2(a).
It is remarkable that we find an interesting new state of the
system in which chaotic motion and regular motion ap-
pear alternately. However, this state, a new type of inter-
mittency, is neither the conventional intermittency (type
I, II, and III) nor quasiperiodic motion. On one hand,
the alternations of chaotic and quasiperiodic segments in
the breather appear regularly and periodically, which is
essentially different from the standard intermittency. On
the other hand, the chaotic segments in the breather are
absent in any conventional quasiperiodic state. The dy-
namics of the new type of intermittency is due to the qua-
sistatic drift in the phase ¢(z); this drift comes from the
small detuning. As AQ) increases the phase drift gradu-
ally loses quasistaticity, and the breathing effect gradually
becomes ambiguous. In the case of AQ} > ﬁ with the
other parameters the same as in Fig. 4, one can no longer
see this kind of breather. Actually, experimental evidence
of this kind of intermittency has been shown by Fronzoni,
Giocodo, and Pettini [9] in suppressing chaos in a bistable
magnetoelastic beam system. However, the mechanism
has not been clearly described. One of us, Qin, and his
co-workers have carried out a circuit experiment which
demonstrates the behaviors shown in Fig. 4—breathers
alternating among regular motions and chaotic motions,
without any ambiguity [13].

In the above discussion, we use only Q = 3w as
an example. Actually, those features mentioned above
may be kept in the more general case of ) = (¢/p) w,
with p and ¢ being some integers. We have actually
tested Q = 3, 20, 30, 40, 50, 6w, and got similar
results. In addition, we have also carried out other
simulations, such as perturbing the x* term instead of
directly adding the weak control forcing in Egs. (1), by
adding a third sinusoidal forcing to Egs. (1), and by
assuming a stochastic drift in ¢ (z), etc. Details of these
investigations will be given in a full presentation.

In conclusion, we have investigated the phase effect
in suppressing nonautonomous chaos by adding a weak
external control forcing. By properly choosing the phase
difference of the two sinusoidal forces, one can greatly
reduce the amplitude of the control forcing to achieve
effective control of chaos. The phase control can be
easily realized in real experiments by employing phase-
locking techniques. Thus it is expected to have a great
application potential in various practical systems. The
breather, unlike the conventional ones [14], is a new
phenomenon, and its mechanism is presented clearly. In
addition, the bifurcation behaviors in systems with two
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or more frequencies are of great interests [15,16], and
how the phase differences influence the bifurcation of the
systems requires further investigation.
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