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Geometric Phases and Anholonomy for a Class of Chaotic Classical Systems
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Berry's phase may be viewed as arising from the parallel transport of a quantal state around a loop in

parameter space. In this Letter, the classical limit of this transport is obtained for a particular class of
chaotic systems. It is shown that this "classical parallel transport" is anholonomic —transport around a
closed curve in parameter space does not bring a point in phase space back to itself —and is intimately
related to the Robbins-Berry classical two-form.

PACS numbers: 05.45.+b

Ordinarily, Berry's phase is defined as the unexpected
phase Ay„picked up by a quantal eigenstate ~n) evolv-
ing under a parameter-dependent Hamiltonian h(R), when
R is made to slowly trace out a loop I in parameter
space [1,2]. This phase is geometric: Its value is given in
terms of the fiux of a two-form V„(R) = —i h(V„~ X ~V„)
through a surface bounded by I'. (Here, ~n) is the nth
eigenstate of h, and ~V„) —= B~n)/BR. R-space is taken
to be ordinary three-space, hence two-forms are sim-

ply vector fields. ) The search for classical counterparts
of Berry's phase has been particularly challenging for
chaotic systems. While Robbins and Berry [3] have ob-
tained the classical limit of the two-form V„(R), the ana-

log of the phase Ay„ itself has proven elusive. It is the
purpose here to show that if one interprets Berry's phase
as an anholonomy effect [2,4], rather than as the dynami-
cal effect mentioned above, then for a certain class of
chaotic systems, Ay„does indeed have a classical ana-

log.
This Letter is arranged as follows. First, the interpre-

tation of Berry's phase as an anholonomy effect —arising
from the parallel transport of an eigenstate around a loop
in parameter space —is reviewed. Next, this transport is
expressed in terms of its generator g(R). The classical
limit g(z, R) of this operator is then obtained, and clas
sical parallel transport is defined as the How in phase
space (z space) generated by $(z, R). Finally, this fiow
is studied, and the classical analog of Ay is derived.
Results similar to those presented here have been ob-
tained independently by Dr. Jonathan Robbins (private
communication).

First, let us define h(z, R) [or simply h(R)] to be the
classical Hamiltonian which is the classical limit of h(R).
Motion under h(R), with R fixed, is assumed bounded
and ergodic over the energy shell. [This implies that,
under the Poisson bracket, h(z, R) commutes only with
functions of the form f(h, R), a fact which will come in
handy. ] Phase space is 2N dimensional, where N ) 1.

Now, consider the following definition of the "parallel
transport" of a quantal state in R-space: Along a curve
R(r) starting from Ro, the nth eigenstate of h(RO) gets
transported to the nth eigenstate h(R'), for each point R'

(n(g(n) = 0, (3)

where (m~D(n) = (m(Vh(n)6 „. [Equations (2) and (3),
and their classical counterparts (5) and (6), appear as
well in the context of Born-Oppenheimer forces, where
R is a dynamical quantity rather than an externally driven
parameter; see Aharonov et al. [5].]

along the curve. To remove ambiguity about how the
phase of the state changes along the curve, we impose
the condition (P(r)~P(r + Br)) = 1 + 0((Br) ) on an
eigenstate thus transported. (Here, r is a dummy variable,
labeling points along the curve in R-space, and also
labeling the state ~P) found at each such point. ) If we
extend this definition to include linear combinations of
eigenstates (by assuming the principle of superposition)
then we have a prescription for how an arbitrary state

~ P)
"evolves" along an arbitrary curve in parameter space. It
was shown by Simon [4] that, under the transport thus
defined, an eigenstate )n) taken around a loop I picks up
a net phase equal to Berry's phase. Berry's phase thus
emerges as an anholonomy effect: When R completes
its circuit, the quantal phase does not return to its initial
value. (The term "anholonomy" refers to the situation
when a nonzero change in some quantity is induced by
taking a parameter R around a closed circuit [2]. For
instance, a vector parallel transported around a loop in
a curved space typically does not return to its original
orientation. )

The quantal parallel transport thus defined is unitary,
and may be described in terms of its generator, the vector
operator g(R) such that

d dR
d7 d7

for any ~P(r)) enjoying parallel transport along R(r).
[That is, if parallel transport is a rule for associating an
infinitesimal step ~6$) in Hilbert space with a given step
BR in parameter space, then g(R) is the operator such that
ih~BQ) = BR g~P).] It is a straightforward exercise to
show that g is determined by the conditions

[g, h] = i h(Vh —D), (2)
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Here, ( .)~it denotes a phase space average over an

energy shell of h(R):
an

( .)eR = dz 6(E —h). . . ,
BF.

where A(E, R) = f dz 8(E —h) is the volume of phase
space enclosed by this shell. Note that the left side
of Eq. (5) is evaluated at some (z, R); the value of
the subscript h on the right side is evaluated at the
same (z, R).

Equations (5) and (6) are solved by
p

ds e I IVh(z R)g(z, R) = lim (8)
n~p

where, as in Ref. [6], Vh = Vh —(Vh)qit, and z, (z, R)
is the point in phase space reached by evolution from z,
for time s, under h(R). If Eq. (8) converges, it solves
Eqs. (5) and (6) uniquely. Generically, however, Eq. (8)
approaches an infinitely convoluted distribution [6], rather
than a smooth vector function on phase space. Since it is
not clear how such an object could serve as the generator
of flow, we assume that Eq. (8) converges. This places a
restriction (discussed below) on the class of systems for
which the results to be derived are valid.

Equations (4) and (8) together specify how a point in
phase space gets transported along a curve in parameter
space. This How has a number of properties that simplify
the investigation of transport around a closed curve:

(i) First, consider a new Hamiltonian h' of the form
h'(z, R) = f(h(z, R), R). Then any $ satisfying Eq. (5)

Give this quantal picture, what might the corresponding
classical picture be? Since Eq. (1) is essentially a pre-
scription for lifting a curve R(r) from parameter space to
a curve ~P(r)) in Hilbert space (given an initial state ~PO)),
we might expect the classical version to be a prescription
for lifting R(r) to a curve z(r) in phase space (given an
initial z;). With this in mind, let us obtain the vector func-
tion g(z, R) which is the classical limit of g(R), and then
define classical parallel transport to be the flow in phase
space generated by g(z, R), according to

(4)

[As in the quantal case dR/dr g acts as a Hamiltonian
along R(r). This makes classical parallel transport a
canonical flow, just as the quantal version is unitary. ]
Once g is obtained, we will be able to study what happens
when a point z; gets transported around a closed curve in
parameter space: Will z; return to itself, and if not will
the anholonomy bear any resemblance to Berry's phase?

To obtain g(z, R) from $(R), we exploit the fact that
$(R) is specified by Eqs. (2) and (3), whose classical
limits, using the simplest of semiclassical approximations,
are

jg, h) = V'h —(Vh)hit,

also satisfies (g, h') = Vh' —(V'h'), i.e. , h(R) and h'(R)
give rise to the same generator $(R). Since h'(R) simply
relabels the energy shells of h(R), this means that parallel
transport is determined by the manner in which h(R)
divides phase space into energy shells (at each R),
but is independent of the energy values that happen
to be assigned to those shells. (In Ref. [3], where the
classical limit of the quantal two-form V„ is obtained, it is
shown that the resulting classical two form -V' shares this
property. )

Thus, for studying the flow generated by g(R), we may
replace h(R) with any h'(R) of the form given above. A
convenient replacement is the "volume Hamiltonian" [3]

np(z, R) = n(h(z, R), R),

with fI as defined earlier. IIp(R) relabels the energy
shells of h(R), assigning to each a value equal to the
volume of phase space it encloses. Note that the dynamics
under Ap(z, R), with R fixed, is the same as under h(z, R),
only with time rescaled.

(ii) For an arbitrary curve R(r) from Ro to Ri, parallel
transport defines a mapping z z' of phase space onto
itself: z' is the point reached by transport from z along
R(r). Let z(r) then denote the curve connecting z to
z', satisfying Eq. (4). From Eq. (5), and the identity
(V'IIp)e ii = 0, we get

d
Ap(z(r), R(r)) = 0. (10)

d7

In words, parallel transport conserves the value of
Ap(z, R) (just as the quantal version conserves quantum
number n). This tells us that the canonical transformation
z z' maps each energy shell Ao of Ap(Ro) to the
same-valued shell Ai of Q,p(Ri). (Thus, under parallel
transport around a closed curve, Ao gets mapped to itself. )

(iii) While the statement that parallel transport takes Ao
to Ai is true for any R(r) from Ro to Ri, the specific
point z' on A] to which a given z on Ap gets mapped
depends on R(r). Thus, a slight change BR(r) in the path
from Rp to R] induces a slight shift 6z in the final point
z'. The mapping z' ~ z' + 6z' induced by this change
of path is a canonical transformation which maps Ai onto
itself. Since any continuous deformation of R(r) (with
endpoints fixed) may be constructed from a sequence of
such infinitesimal changes in path, we are led to conclude
that, by continuously deforming the path from Ro to R~,
we generate a canonical gow of the point z' to which a
fixed z gets mapped. Now, the assumption of ergodicity
guarantees that the only canonical flow on the energy shell
Ai is that generated by Ilp(z, Ri)—or h(z, Ri)—itself.
Thus, a continuous deformation of the path from Rp to R ~

displaces z' along a trajectory of the Hamiltonian Ap(Ri).
Assuming further that any closed curve in R-space can be
shrunk to a single point, we conclude that, if a point z; is
transported around a curve starting and ending at Rp, to a
point zf, then z; and zf lie on a single trajectory of h(Ro).
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Since the energy shells of h(R) are identical to those
of lip(R), parallel transport from Ro to Ri maps the
shells of h(RO) to those of h(R~). This mapping conserves
the value of 0,p, but not necessarily of h. Thus, the
assumption that Eq. (8) converges has restricted us to
systems with the nongeneric property that (for any Ro
and R&), h(z, Ro) is related to h(z, R&) by a canonical
transformation, along with a possible relabeling of the
values of the energy shells. Let us call such a system
a generalized canonical family Th. is follows Ref. [7],
where a canonical family is defined by the property that
the Hamiltonians at different points in R-space are related
by canonical transformation, without any relabeling of
energy shells. IIP(z, R) constitutes a canonical family.

As discussed in Ref. [7], for a canonical family, e.g. ,

&p(z, R), we may construct a vector function g(z, R)
so that the flow generated by g [as per Eq. (4), only
with g in place of s] has the following two properties.
First, as with g, this flow, along any path from Ro
and R~, maps an energy shell of Ap(RO) to the same-
valued shell of IIp(Ri). However, unlike with s, this

mapping is independent of the path connecting Ro and
R~. The generator g provides the final tool needed to
establish exactly where a point z; gets taken when parallel
transported around a closed loop in parameter space.

Since fiow under g preserves IIp, we have [g, Bp) =
VAp, as was the case with g. Thus, (s —g, Ap) = 0,
so g and g differ at most by some function A(AP, R):
g(z, R) = g(z, R) +A(Ap(z, R), R). Since the phase
space average of g over any energy shell of Ap(R) is
zero, we have

A(cu, R) = —(g(z, R))„R, (11)
where co denotes the volume enclosed by the energy shell
of Ap(R) over which the average is taken. As shown in

Ref. [7], we may choose g so that
V' x A(cu, R) = V'(~, R),

where V' is the Robbins-Berry classical two-form (the
classical limit of the quantal two-form V„) associated with

Ap(z, R). In what follows we assume Eq. (12) holds.
We are finally prepared to investigate parallel transport

around a loop I, starting and ending at Ro. Let R(7)
explicitly represent this loop, with ~ running from 7.; to
7f . Let z; be an initial point in phase space, and zf the
point reached from z; by transport around I . We already
know that zf and z; lie on a single trajectory of Ap(RO);
let us use Ao. , the time of evolution under Bp(RO)
separating zf from z;, as the measure of "distance"
between these two points along the trajectory. 5 o-

thus measures the anholonomy associated with transport
around I . (This definition of distance along a trajectory
is meant to be unaffected by a relabeling of the energy
shells: For any Hamiltonian h, we take distance along a
trajectory to mean time of evolution under the associated
"volume Hamiltonian" Op. In one degree of freedom,
this reduces to the ordinary angle variable of action-angle
variables, divided by 2~.)

Vy(z, R) = —(y(z, R), g(z, R)). (13)

Now, let z(7) be the phase space curve obtained by
parallel transport from z; along R(r), and let y(r) =
y(z(r), R(r)). Thus, as z(r) traces out some path in
phase space, starting and ending at an energy shell Ao

of Ap(RO), its projection y(r) traces out a path wholly
confined to Ao. Since R(r;) = R(rf) = Ro, we have

y(r;) = z;, and Y(rf) = zf, so we solve for the distance
between z, and zf by solving for y(r):

dy By dz dR+Ty.
d~ Bz d~ d7.

dR . (X A) (14)

dou-

singg Eqs. (4) and (13), along with properties of the
Poisson bracket. In the last line, A = A(Ap(z, R), R) =
A(Ap(y, Ro), R), hence

dy dR BA
(~, R) is, &p(Y, Ro)), (15)

d7 d7 BM

with BA/8 cu evaluated at the constant value
co = Ap(y, Ro). Finally, defining

R{~), BA
o(r) = . dR' (cu, R'),

Rp Bco

with integration occurring along I, we get

(16)

dy = i y, &p(y, Ro)) .
do

(17)

This means that y evolves along a trajectory of Ap(RO),
with o. playing the role of time of evolution. Thus,
the distance Ao. separating zf = y(rf) from z; = &(7;)
is given by cr(rf) —o.(~, ) = fr dR BA/Bcu Using.
Stokes*s theorem and Eq. (12), we finally have

dS V'(co, R), (18)

where the integral denotes the fiux of V'(cu, R) through a
surface bounded by I .

We have taken V'(cu, R) to be the two-form associ-
ated with Ap(z, R). However, since this two-form is un-

changed by a relabeling of the energy shells [3], V'(~, R)
is equally well the two-form associated with our original
h(z, R). [In either case, however, the integral f f dS V'
is evaluated at fixed cu = A(F, R), not at fixed F.]

Equation (18) is the central result of this Letter; it gives
the classical anholonomy resulting from parallel trans-
port around a loop in parameter space. But, does it

To solve for Ao. , consider the mapping z ~ y(z, R),
where y is reached from z by Bow under g along any path
from R to Ro. This constitutes a kind of projection: For
any R, each z on a given energy shell of Ap(R) is mapped
to a point y on the corresponding shell of 0 p(Ro). y(z, R)
satisfies
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make sense to call this anholonomy the chaotic classi-
cal analog of Berry's phase? Let us focus on the fact
that both Ao. and Berry's phase Ay„are expressed geo-
metrically, in terms of the ilux of a two-form (V' or V„)
through the loop in parameter space. Specifically, since
Ay„= —(1/h) f JdS . V, [3], and since V„~ V' semi-
classically, Eq. (18) suggests the correspondence

Ao- = —6 Ay„ (19)
8 cc)

between the classical and quantal measures of anholon-
omy. This relationship is the same as that found in
Ref. [8] between Berry's phase and Hannay's angle [9]
(the classical geometric phase for integrable systems),
which suggests that we are on the right track in associ-
ating Ao. with Ay .

On the other hand, the original formulation of Berry's
phase makes a dynamical statement concerning evolution
under a slowly time-dependent Hamiltonian. Does Ao-

have a similar significance for chaotic classical systems?
That is, does it make a prediction concerning the evolution
of trajectories under h(z, R), when R slowly traces out a
closed curve? The exponential divergence of chaotic tra-
jectories makes this a difficult question, to which I have
no answer. For the time being, then, Eq. (18) is a purely
formal result, one more piece of the puzzle, but not the
last piece. Its value lies in emphasizing and illuminating
the classical chaotic limit of the quantal transport underly-
ing Berry's phase, and in demonstrating that the anholon-
omy associated with this classical transport closely resem-
bles its quantal counterpart.

As mentioned, the two-form V' was originally derived
as the classical limit of V, . Later, Berry and Robbins
[6] demonstrated the significance of V' within a purely
classical context. Namely, when R(t) is itself a dynamical
quantity, V' acts as a magnetic field influencing the
evolution of R(t). Perhaps the anholonomy given by
Eq. (18) will contribute to an intuitive understanding of
this geometric magnetism. Incidentally, the restriction
in this Letter to generalized canonical families has a
simple interpretation in the context of Ref. [6]: For these
families, the frictionlike reaction force (deterministic
friction) is identically zero [7].

The problem of generalizing the analysis of this Letter
to systems for which Eq. (8) does not converge remains
open, and if related to the question of whether or not V'
is closed (6 . V' = 0) in the general case [3,7].

In the time since the original submission of this
Letter, it has come to my attention that the classical
parallel transport studied herein has been discussed by
Montgomery [10] and Golin, Knauf, and Marmi [11].
(These authors obtain this transport classically, rather
than as the limit of the quantal version. ) Equation (18),
however, is a new result.
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