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Universal Nonsingular van der Waals Potentials
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Universal spherical nonsingular van der Waals interactions are developed through considering the
effects of finite molecular size. The frequency integration upper limit of this interaction has been
determined for the first time to be on the order of 10" rads ' regardless of the intermolecular
separation. This potential has been tested successfully for the following representative systems: H2
( X), He2, NaK ( X), and LiHg.

PACS numbers: 34.20.Gj, 35.10.Di, 35.20.My, 41.20.Bt

The van der Waals interaction plays an important role
in a host of phenomena such as adhesion, physical adsorp-
tion, and wetting. The dispersion component of this inter-
action is usually the dominant contribution and is the only
contribution for neutral nonpolar systems. Because of its
smallness, the direct ab initio calculation of the disper-
sion energy requires very complex time-consuming con-
figuration interaction calculations, which have only been
successfully carried out for a few systems such as H(1S)-
H(1S) and He-He. The semiempirical approach is more
favorable since such constructed potentials are theoreti-
cally correct at long range and at short range, and are
possibly able to describe the "intermediate region" inter-
action correctly.

The widely used semiempirical van der Waals po-
tential is V(R) = Ae ~ —C6/R —Cs/R —Cia/R'
The short-range exponential repulsive term is largely due
to exchange as well as electrostatic forces and can be
determined fairly accurately, for example, by SCF (self-
consistent-field) calculations. However, the long-range
attractive terms, obtained from the asymptotically (R ~
~) correct ab initio dispersion series, are usually prob-
lematic around the van der Waals minimum, the region
of interest. For example, even though the above model
with SCF values for A and p, and theoretical values for
C6, C8, and C&0 was able to predict the experimentally
available rare gas dimer well parameters to within a few
percent [1], it gives purely attractive interaction with no
potential minimum for the alkali-atom —rare-gas systems.
This indicates the inappropriate use of the asymptotically
correct attractive interactions in the region around the van
der Waals minimum.

The divergence problem inherent in the dispersion
point-multipole expansion and the short-distance singu-
lar behavior for each term in the expansion series have
long been noticed by Brooks [2], Roe [3], and Dalgarno
and Lewis [4]. Various efforts have been made to solve
this short-distance singular behavior from both first prin-
ciples and semiempirically [5—9]. Partial success has
been reached and considerations are limited to the non-
retarded region. The purpose of this Letter is to derive
a nonsingular attractive interaction which includes retar-

dation effects and is correct at least around the van der
Waals minimum, and for larger intermolecular separa-
tion. Therefore this new attractive potential can replace
the above, only asymptotically correct, attractive terms so
that the resulting potential can be used universally.

Mahanty and Ninham were probably the first to use the
semiclassical field approach of Casimir and Polder [10,11]
to consider the finite molecular size effect [12,13]. They
took a Gaussian form of the polarizability density sim-

ply for mathematical convenience. As a result, their re-
tarded potential is very complicated and it is very hard to
go beyond the dipole-dipole interaction. This is proba-
bly the reason that Richardson [14] later generalized only
nonretarded interactions for higher multipoles. The semi-
classical field approach follows the physically intuitive
description of dispersion forces. Consider the interaction
between two molecules as an example. The variable elec-
tric field produced by the instantaneous dipole in one mole-
cule acts on the other, therefore, polarizing it. Using the
linear (quantum) response theory [15],the Fourier compo-
nent of the polarizability density tensor with the considera-
tion of the effects of finite molecular size can be expressed
[13]as

2

n„(k, co) = ——

(n[rf q)(qfe'"'f n) (qfrf n)(nfe'" "f q) ik
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where to„~ = (E„—E~)/6, ~n) usually stands for the un-
perturbed molecular ground state, and

~ q) the possible
unperturbed molecular states. If more than one electron is
involved, the position vector r and e'k" in Eq. (1) should
be understood as g r; and g e'~ ", respectively. From
electrodynamics, we know that once a time-varying po-
larization is present, there is a current associated with it.
Therefore the electromagnetic field surrounding one mole-
cule must be changed relative to that when the molecule is
isolated. In other words, the electromagnetic wave spec-
trum must be shifted in some fashion. This shift can be
determined by solving the corresponding Maxwell equa-
tions with this current as the source and by choosing the
Lorentz gauge. As in the Drude model, the sum of the
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frequency shifts multiplied by the Planck constant for the
entire spectrum of the two-molecular system must give the
dispersion interaction energy of the system. As a prelimi-
nary investigation, we focus here only on the dipole-dipole
dispersion interaction. This interaction including retarda-
tion can be written [13], in general, as

V(R) = —4qr6 dg Tr(G2(R), R2., ig) Gl(R2, R)., ig)),

(2)

where R is the center-to-center distance of the two
molecules, R~ and R2 are the center position vectors of the
two molecules, respectively, and

1 3 (g2/c2) I + k . k, „- (-„, -„,)

(2qr)' g2/c2 + k2

d'u n(u, ig) e "'", (3)

where c is the speed of light and I is the unit tensor. Note
that the polarizability density tensor (PDT), n(r, ig), de-
pends on both position vector and frequency. It is clear
from Eqs. (2) and (3) that once the PDT is known, the po-
tential can be obtained simply by performing a few inte-
grations. Our job is to find a general spherical-symmetric
PDT for atoms and small molecules. The detailed deriva-
tion is given in [16]; here we simply state the necessary
steps to lead to the general PDT. Applying Eq. (1) to the
hydrogen atom, the only one whose Schrodinger equation
can be solved exactly and analytically, we end with

n(r a)) = ——Ie "i" ' 'iq'" (4)
e fj G ](r ao

M&q CO
2

where ap is the Bohr radius, Gq &(r/ap) is a (q —1)th-
order polynomial of variable r/ap, and f&q is a constant.
In reaching Eq. (4), the specific properties used are purely
from the angular part of entire wave functions and some
residue theorems are frequently used. The distance damp-
ing effect is dominantly controlled by the exponential fac-
tor exp( —r/ap) in front of the sum in Eq. (4), which is
the one in the ground state wave function. For example,
as r » ap, that n(r, cu) goes to zero is dominantly con-
trolled by this exponential. As r —ao, the polynomial
Gq 1(r/ap) is almost a constant compared to various ex-
ponential factors in Eq. (4), and the exponential factors
within the sum in Eq. (4), except for the first few q's, can
essentially be taken as 1. For simplicity and universal pur-
pose, a good approximation of Eq. (4) can be taken as

—Priap
n(r, cu) =I,n(cu).

87rap P3

The parameter P = 1.2 is introduced to account for the
atomic size effect by taking the (q = 5) exponential
exp( —0.2r/ap) out of the sum and combining it with
the dominant exp( —r/ap), and all r-dependent terms
remaining within the sum are set to constants. Also,

2

)~ Cd~q
—

QP
(6)

a'(r", cu) = 1
e "i'In(cu),

S~a3
where a is the atomic or molecular size parameter and the
frequency expression for n(cu) looks similar to Eq. (6).
The explicit potential follows from Eqs. (2) and (3) as

V(R) =—36
ds V(R, a~, a2, s),

where

where Zq& is the collection of those constants and a pos-
sible normalization factor. From the above, we conclude
that the distance damping effect to the PDT is determined
by the exponential exp( —r/ap) in the ground state wave
function of the atom with a replacement of ao, the Bohr
radius, by ap/P, the atomic size parameter. For other
atoms, exact or even accurately correlated wave functions
are, in practice, seldom available; only the fairly accurate
Hartree SCF wave functions are easily accessible. The
SCF wave functions, which are essentially the extension
of the radial part of the hydrogen atom wave function to
all the other atoms, satisfy just our needs. Since the radial
part of the SCF wave function for any atom always has an
exponential function similar to exp( —r/ap) and the angu-
lar part is the same as that of the hydrogen atom, Eqs. (5)
and (6) should also hold with a proper interpretation of the
quantities in these equations for the corresponding atom.
Similar arguments using molecular wave functions from
molecular orbital theory lead to the same conclusion for
small molecules too. For large molecules, due to the ap-
pearance of many centers of polarization and many-body
effects, we postpone the study of this case to elsewhere.
Following our recipe, one sees that Mahanty and Nin-
ham's Gaussian form of the PDT corresponds actually to
choosing a molecular ground state as a harmonic oscillator
wave function. We emphasize that, unlike the situation in
the point-multipole expansion, the correct electronic wave
function must be used to correctly account for the finite
molecular size effect, as indicated in [17].

So far we have proved that, to a good approximation,
the following expression for the PDT is physically correct
in general for atoms and small molecules:

V(R, a|, a2, s) = n~(is) n2(ig) e ' [F(R,a~, g) F(R, aq., s) —F(R, a(', $) G(R, aq, g)

G(R, a~, g) F(R, a2, g) + 3G(R, a~, g) G(R, az, g)],
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with a~ and a2, the two atomic or molecular

1

size parameters, respectively; and

Rg (Rg)' (jjg)' jj (at)'
—{R/a) (1—ag/c)R g'

a 2a2 c

jest j (Rt )'

+ + 3 + 1 e
—(R/a) (1 —a//c)

Looking at Eq. (9) as well as Eq. (10), one sees a common frequency factor 1/[1 —(ai g/c)2]~ [1 —(a2$/c)2]2, which
is almost unity if both ajg/c and a2$/c are much less than 1. Equation (9) seems to go to infinity if both aig/c and
a2se/c approach 1. However, this is not the case if one looks at Eq. (10) carefully. The above discussion implies that
this factor does not play a role in (9) unless ai $/c and a2s /c are much greater than 1. For example, if ais /c and a2$/c
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FIG. 1. Distance damping of f6(R) as a function of intermolecular separation R. (a) For H, ('X), ab initio (Koide et al. [18]),
Tang and Toennies [7] (b = 1.67 a.u.), determined (this paper with 1/aH = 1.2 a.u.). (b) For He2, Tang and Toennies [7]
(b = 2.388 a.u. ), fitted (this paper with 1/aH, = 1.695 a.u. ), determined [this paper with 1/aH, = 1.2(IH, /Ijj)jt2 = 1.614 a.u.].
(c) For NaK ( X), Tang and Toennies [7] (b = 0.8414 a.u. ), fitted (this paper with 1/aN, = 0.6454 a.u. and 1/a~ = 0.56 a.u. ),
determined [this paper with 1/aN, = (I /NI )'H'=I0.6147 a.u. and 1/ay. = (IK/Iji)'~' = 0.565 a.u.]. (d) For LiHg, Tang and
Toennies [7] (b = 1.012 a.u.), fitted (this paper with 1/aL; = 0.61 a.u. and 1/aH = 0.8758 a.u. ), determined [this paper with
1/aj.j:(I /I Lj) ij= 0.6297 a.u. and 1/a« = (IHs/I„)'i = 0.8758 a.u.].
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take the value 10, the factor would be 10 8, negligibly
small. Therefore it is legitimate to set the frequency-
integration upper limit in (8) as go = max[c/at, c/a2],
which is on the order of 10' rads ' by noticing that
c = 3 X 10'o cm/s and a —10 cm. This is entirely
consistent with the physica11y intuitive consideration that
the energy involved in atomic and molecular phenomena
is at most on the order of keV, i.e., x-ray energy,
giving frequency 10' rad s '. Further numerical study
shows that Eq. (9) is negligibly small if the frequency
g is greater than 0.5c/a regardless of the intermolecular
separation R. To our knowledge, this is the first time
that such a fact has been taken into account explicitly
in the intermolecular potential. We stress that no such
conclusion can be reached if either the nonretarded limit
is taken (c ~) or the molecular size parameters ai and
a2 are set to zero. The nonsingular nonretarded potential
can be obtained from Eq. (8) by setting c ~ in Eqs. (9)
and (10) as

C6f6(R)
R

where C6 = (3'/vr) fo'dg nt(ig) er2(ig), and the distance
damping function f6(R) is

above determined value. As shown in Figs. 1(a)—1(d),
the very good agreement indicates the universality of the
current potential, since the representative systems include
four chemically different types of van der %'aals interac-
tions, giving interactions from very weak to very strong,
and potential wells from very narrow to very wide.

In summary, a universal PDT with spherical symmetry,
to a good approximation, has been determined, which is
used to calculate nonsingular potentials for both retarded
and nonretarded cases through a semiclassical field ap-
proach. The finite molecular size effect incorporated in
the PDT is crucial to remove the short-distance singular
behavior from the widely used potentials which are ob-
tained from the point-molecular approximation. Very im-
portantly, we are able to show, for the first time, that the
frequency-integration upper limit of the van der Waals in-
teraction is 0.5c/a, instead of infinity.

This work is supported by NASA Innovative Research
Program Grant No. NAGW-3054. Special thanks are due
to Dr. Robert Lucchese for valuable discussions.
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As expected, if both at and a2 are set to zero, Eq. (8) goes
to the usual point dipole-dipole retarded potential while
Eq. (11)goes to the famous London potential.

Noticing that the maximum peak frequency in n(ro)
is, in general, much less than the go given before, the
R 0 limit in both retarded and nonretarded potentials
gives V(R 0) = —C6/72(ata2), finite as expected. As
is well known, true dispersion energies are small in nature
and are completely negligible at short intermolecular
separation in comparison with the tremendously large
repulsive energies. The above R 0 limit is merely used
to show that the short-distance singular behavior inherent
in the London potential is removed, and the potentials
developed here are analytical and finite at a11 separation.

The comparison of our potential to those previously ob-
tained is equivalent to that of the corresponding damping
functions. This has been done for the following repre-
sentative systems: H2 ( X), He&, NaK ( X), and LiHg, for
which either nearly exact ab initio potentials [18] or the
very successful semiempirical potential [7] are available.
The parameter a in our damping function has been deter-
mined accordingly by the formulas given in [19] (atomic
units are used). Except for the H2 ( X) system, a fitted
curve is also given for each of the remaining systems.
The fitted parameter a is within 5% of the corresponding
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