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Long Range Magnetic Interaction between Josephson Junctions
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A new model for magnetic coupling between long Josephson junctions is proposed. The coupling
mechanism is a result of the magnetic fields outside the junctions and is consequently effective over
long distances between junctions. %e give specific expressions for the form and magnitude of the
interaction, and we study a few dynamical examples of experimental relevance. It is found that this
new coupling manifests itself much like Volkov's coupling through thin superconductors.
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A long Josephson junction (LJJ) is typically character-
ized by its internal properties such as capacitance, surface
inductance, Josephson energy, and tunneling of quasipar-
ticles [1]. However, due to the spatial variation of the
surface currents in the superconductors defining the junc-
tion, magnetic fields are created outside the junction. If
two or more LJJ's are in close proximity vicinity, these
external magnetic fields will overlap and, hence, cause in-
teraction between the individual junctions (we will refer
to this as external magnetic coupling). This idea was the
basis for the experimental and theoretical works of Hoist
et al. [2]. A local interaction model was created in order
to explain the experimental results. This model has been
able to explain experimental features like phase locking
[3,4], power emissions [5], and splitting of the character-
istic fluxon velocities [3]. The model of local magnetic
interaction turned out to be similar to another coupling
mechanism between closely stacked LJJ's, suggested by
Ngai [6]. This coupling mechanism, later considered by
other authors [7—9] and finally parametrized by Volkov
[10], is concerned with interactions of currents and mag-
netic fields in thin superconductors between junctions (we
will refer to this as internal magnetic coupling).

In this paper we will parametrize the external magnetic
coupling. We will see that the external coupling in
genera1 must be modeled as a nonloca1 interaction, but
in some limiting cases we can regard the coupling as
local. New effects are predicted as a result of the
nonlocal interaction. Since the external coupling always
accompanies the internal (the opposite is not the case), we
discuss the importances of the external coupling relative
to the internal.

A single overlap LJJ is modeled by [1]

tively. Here, the permeability is given by p.o, the per-
mittivity by e, and the critical current density is I, . The
electric and magnetic thicknesses of the junction are given
by the insulating layer to and d = 2AL. + to, AL being the
magnetic penetration depth of the superconductors. The
bias current density (per length) g is normalized to the
critical current density TVI, of the junction, and voltages
(P,) are normalized to hap„/2e. The dissipative param-
eter n, representing tunneling of quasiparticles, is given
by n = Gitcp„/2el„where G is the conductance density
of the junction in the normal state. Energy is normal-
ized to Hp = I,WAJh/2e = W(h/2e) /ppdAJ, where the
width of the junction is W. We assume W ( AJ in order
to consider the dynamics of the junction one dimensional.
The spatial derivative P, (x) denotes the normalized sur-
face current density in the superconductors at the point x.
The magnetic Aux dM@ over an interval dx at point x is
therefore given by

dMy = —@,(x) dx,
2e

(2)

where dM@ is equivalent to a magnetic charge at the edge
of the junction.

Let us now consider two adjacent LJJ's, represented by
the phase variables, t'ai(xi) and Pq(x2). The xt and x2 axes
are parallel as illustrated in Fig. 1, where two relevant
geometries are shown. Because of the external magnetic
fields discussed above, these junctions will experience
a normalized Coulomb-like interaction energy [dH;„, =
dM~, dM~, /4vrppr, where r = QS + Aq(xz —xi) is the
physical distance between the two charge contributions,
5 being the physical distance between the edges of the

junctions],

—@(, —sin@ =n@, —rt, g(xi xp)@i I, @2» dxi dx2, (3)

where @ denotes the difference between the phases of
the quantum mechanical wave functions defining the junc-
tion. The spatial (x) and temporal (t) coordinates are nor-
malized to the Josephson length Aq = Jh/2edp, pl, and.
the inverse plasma frequency cp,,

' = /he/2etpI, . , respec-

50
Ql + z'/s'

X dig
4. W5

(4)

where s = S/Aq, and AL (( S is formally assumed when
considering dM@ a point charge. The geometrical pre-
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h = @;„@,, + @;, g(x; —xj)@~, dx~

x; =l/2

(6; 1 dxg 71( Cj6; 1 dX,

FIG. I . Schematic diagrams of magnetically coupled long
Josephson junctions. Adjacent geometry proposed in Ref. [2]
(a). Stacked geometry of [6,7, 10] (b).

g, , (x; —x,)P),, dx, , (5)

where i and j (= 1, 2 and i 4 j) denote the two junctions
and their variables.

Defining the total normalized energy h by

h=hy +h@, +h (6)

h@, = [2@, , + 2@, , + I —cos @;]dx;

Assuming that the system has the normalized length l =
I /Aq and using Eq. (5), we obtain the time derivative of
the total energy as

factor N, which is 1 if no superconductors are present,
is estimated as fo11ows. First of all we assume idealized
semi-infinite geometry. Under this assumption a factor of
2 is contributed to N from concentrating the fields on
one side of the semi-infinite superconductors. A factor
of 2 is contributed from the fact that the energy density
should be integrated over the space on one side of the
superconductors only. Finally a factor of 2 comes from
the "mirror" screening currents in the superconductors.
We therefore estimate N to be 4 for the geometry
shown in Fig. 1(a). For the stacked geometry shown in

Fig. 1(b), an additional factor of 2 comes from the two
equivalent sides of the superconductors. We therefore
estimate N to be 8 for the stacked geometry. We note that
these estimates are correct only for perfect (semi-infinite)
geometries. For real, finite size, geometries we should
expect the prefactor N to deviate from 4 or 8.

Following Ref. [11] the above magnetic interaction
can be included in the dynamical field equations in the
following form:

—P;„—sing; = nP;, —g;

i=l
From this expression we see that, for a = g~ = g2 = 0,
the energy is conserved if we choose

r/2

0 ., (—J/2) =— g(~l/2 —x, )@,„, dx&. (9)

This condition is consistent with the usual boundary
conditions for LJJ's, since the right-hand side of Eq. (9)
is the magnetic field at the boundary originating from
the other junction. Notice that for l ~ or for periodic
boundaries, P;(J/2) = @,(—J/2) —27m;, the energy is
automatically conserved when n = g] = g2 = 0.

Let us study the small amplitude limit of the unper-
turbed coupled system Eq. (5),

g, (x; —x,)P, dx, . (10)

Evaluating the spatial Fourier transform of these equa-
tions, adding and subtracting, yields

(~' —k' —1)(@I,k —0'2,k) = ~k'G(k)(41, k —42,k)

cu(k) = 1 + [1 -+ G(k)]k2 (12)

and from this we can evaluate characteristic phase veloci-
ties, c~h, and group velocities, c~, .

cph = 1+f21 ~ gk k,
1

—
G(k)

—
—,)k iG'(k)

cg„= fkf
Ql + k2[1 G(k)]

14

(13)

It is important to realize the similarity between the
external coupling and the internal coupling of the stacked
geometry discussed in Refs. [6,10]. For the internal
coupling it was found that the normalized interaction
energy is given by

(i)
h;„, =6] ~ (Xl X2)4 l,x( (Xl )@2x2 (X2) dX1 dX2

6) =e s' = 5/At, = sAJ/Az. .

This interaction has the same form as Eq. (3) if g(z) is the
Dirac delta function 6(z). A situation where g(z) (of the
external coupling) can be regarded as a delta function is
when the distance s between the junctions is small [see
Eq. (4)]. Because of the similarity between the external
and the internal coupling mechanisms for small distance s,
we expect the dynamics of the externally coupled system
to exhibit many features seen for the internally (locally)
coupled system.

(11)
where G(k) is the Fourier transform of g(z): G(k) =
2sbpKp(s[k~). K„(z) is the modified Bessel function of
second kind and order n. Clearly two dispersion relations
are identified from Eq. (11),
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In order to perform simple numerical simulations we
have applied periodic boundary conditions for all the
following results. Note that the interaction given in

Eq. (5) should be understood in the following way for
periodic boundary conditions:

I/2

g„, (z)@.... dx, ~ g g, (z —kI,)$.,. dx, , (16)
—I/2

where z = x; —x, . Making direct contact to the exten-
sive studies of stability of bunched states for the coupling
mechanism given by b, & [4], we study a system with one
kink soliton in each junction; i.e., the initial condition for
each junction is given in the form

P; = 4 tan 'exp o. ', (17)
1 —u2

where o. = ~1 is the polarity of the kink and u is
its velocity. As was demonstrated in Refs. [3,4], this
solution deforms when @&

= Pq in a system coupled
by 5&, and the asymptotic speed is consequently higher
than that of the separated mode cbi 4 P2. The bunched
unipolar mode, @& = @2, is a high energy state [see
Eq. (3)] and therefore unstable in most cases. However,
it has been shown to be stable for the internal coupling
if the translational velocity exceeds a certain critical
value [4]. Therefore, below this threshold the mode

Pi = P2 is unstable and the high velocity state switches
to the low velocity state indicating the separated mode,
Pi 4 @2 The di.fference between those two characteristic
velocities, as well as the critical velocity for which the
bunched (Pi = P2) mode is stable, indicates the strength
of the coupling mechanism A~. We note that even if the
coupling is too weak to stabilize the bunched @i = @2
mode the system may still exhibit strong phase locking,
based on the repulsion between the solitons (see Refs.
[2,3] for details).

In Fig. 2 we have shown simulated current-voltage (IV)
characteristics (V = uvres„h/le) and group velocities for
a system with the following parameters: l = 10, o. =
0.1, and g~ = g2. Consider a coupling given by the
experimental geometry in Ref. [2] [geometry shown in
Fig. 1(a)]: AJ = 250 p, m, Al = 90 nm, W = 20 pm, and
S = 35 p, m. From these values we obtain the coupling
parameters: ho ——0.021 and s = 0.14 from Eq. (4). The
results of the simulations are shown in Fig. 2 as thin
solid lines labeled "1." For high bias we find clear
evidence of two characteristic velocities as given by
Eq. (14) and shown in Fig. 2(b). The high velocity is
found for the @i = P2 mode, whereas the other indicates
the separated @i 4 P2 mode. A magnification of the IV
structure with the two characteristic velocities is shown
as an inset in Fig. 2(a). Decreasing the bias for the high
speed mode, the system reaches a critical point where the
stability of the bunched mode @~ = P2 vanishes. Below
this point the two solitons will always repel each other
and the solitons move according to the separated mode
(low speed). This is qualitatively the same phenomenon
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as was explained for the internal coupling (h~) [4],
and the fact that we can identify the two characteristic
velocities implies that the effective interaction between
the junction is sufficiently strong to produce substantial
phase locking —even in this relatively weakly coupled
system, as was also observed experimentally [2]. We note
that there is no internal coupling for this geometry.

If we consider the stacked geometry, shown in
Fig. 1(b), typical experimental parameters can be
found in Refs. [12,13]: AJ = 25 p, m, A& = 90 nm,
and W = 10 p, m. In Fig. 2 we have shown results
for a system with S = 10AL as the medium thickness
curves labeled "2." The internal coupling parameter
is A~ = 0.5 x 10 4 and therefore insignificant [see
Eq. (15)]. The external coupling, in this case given by
the parameters, 50 = 0.318 and s = 0.036, demonstrates
strong interaction with two well-separated characteristic
velocities, which are also seen from the group velocities,

FIG. 2. Normalized IV curves for a coupled system with one
soliton in each junction (a). Group velocities calculated from
Eq. (14) (h). Parameters are l = 10, a = 0.1, and periodic
boundary conditions. Case 1: thin curves represent the external
coupling, Ap = 0.021, and s = 0.14. Case 2: medium solid
curves represent the external coupling, Ao = 0.318 and s =
0.036 [dashed curve in (h) represents the group velocities for
the corresponding internal coupling, b

&

= 0.5 X 10 4]. Case 3:
Thick solid curves represent the external coupling, Ap = 1.592
and s = 0.0072, and the dashed curves represent the results of
the corresponding internal coupling, Al = 0.135. Inset shows
a magnification of case 1.
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shown in Fig. 2(b). The dashed curve, labeled "2" in

Fig. 2(b), represents the two (indistinguishable) group
velocities for the internal coupling, 6] = 0.5 X 10 4.

Finally the situation for 5 = 2A& is shown as thick
curves, labeled "3." The external coupling is given by
Ao = 1.592 and s = 0.0072, whereas the internal coupling
is given by A~ = 0.135. For this geometry the internal
and external coupling mechanisms result in almost the
same IV characteristics (the results from the internal
coupling are shown as dashed thick curves in Fig. 2). If
the distance 5 was chosen even smaller, we would observe
the internal coupling as the dominant of the two.

From the above simulations we see that the external
coupling mechanism, parametrized in this paper as a two-
parameter model with nonlocal interaction, can produce
strong interaction over very long distances between two
junctions. We have demonstrated that the experimental
geometry reported by Hoist et al. [2] presents magnetic
interaction strong enough to produce substantial phase
locking between fluxons. We have also demonstrated the
close similarity between the external and internal coupling
mechanisms by observing the two characteristic velocities
in the coupled system. In fact, the two coupling mecha-
nisms (the internal and the external) manifest themselves
in much the same way, except for their magnitudes.

We note that experiments designed to observe phase
locking between LJJ's coupled through, e.g. , an external
cavity, may have unintentionally included the magnetic
coupling discussed in this paper. One example of such an
experimental geometry is presented in Ref. [14], where
the geometrical parameters lead to an estimated magnetic
coupling of 50 = 0.0015 and s = 0.44. The effect of the
magnetic coupling is in this case insignificant compared
to the coupling through the external linear resonator.
However, the magnetic coupling can nevertheless give
rise to phase locking between fluxon motion in individual
junctions.

We conclude that this new magnetic interaction may
be an important, desirable or undesirable, coupling mech-
anism between LJJ's fabricated in an array. Many ex-
periments are reported, e.g., [2,12—15), on phase locking
between LJJ's, where the external magnetic coupling may
have played a role in the dynamics. It is therefore im-
portant to verify this coupling mechanism experimentally
by fabricating, e.g. , a stacked structure with parameters

similar to what is shown in Fig. 2 (case 2). Such an ex-
periment, where the internal coupling mechanism has no
effect, should demonstrate strong coupling with clearly
separated characteristic velocities [see Fig. 2 (case 2)]
predicted by the external magnetic coupling.
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reading the manuscript. Parts of this work were per-
formed under the auspices of the U.S. Department of
Energy.
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