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We propose that the development of odd-frequency superconductivity is driven by the growth of an

anomalous three-body scattering amplitude.

Using this as an ansatz we develop a mean-field theory

for odd-frequency pairing within the Kondo lattice model. The three-body bound-state formation leads
to the formation of a gapless band of strongly paired quasiparticles whose spin and charge coherence
factors vanish linearly with energy. Possible links with heavy fermion superconductors are discussed.

PACS numbers: 74.70.Tx, 74.25.Ha, 75.30.Mb

Although three-body bound states are ubiquitous in
many branches of physics, little is known about their
role in collective condensed matter behavior. According
to current wisdom, quantum phase transitions are an ex-
clusive response to the growth -of anomalous two-body
scattering amplitudes. Here we discuss the possibility
of phase transitions driven by an instability in a three-
fermion channel [1]. We are led to propose this as a
mechanism for the development of odd-frequency super-
conductivity, where the gap function is an odd function of
frequency A(w, k) = —A(—w, k) [2,3].

Our interest in this topic is physically motivated by
heavy fermion superconductors (HFSC) [4,5], where su-
perconductivity is intimately associated with the compen-
sation of local moments. In these dense local moment
systems, huge amounts of spin entropy are liberated by
the condensation process: In UBe 3, for example, the con-
densation entropy AS = Cy(7.+) = 1 J/Kmol is of order
0.2RIn2. To microscopically explain how the order pa-
rameter involves the local moment degrees of freedom is
a major challenge.

A striking feature of these compounds if the failure
of a single quasiparticle density of states to reconcile
their thermodynamics and nuclear relaxation rates. Heavy
fermion (HF) superconductors exhibit a universal T3
dependence in their NMR and NQR relaxation rates
1/T; « T3, but exhibit no corresponding universality in
their specific heat Cy. In superconducting UPt;, for
example, C, = y,T + BT?, [6] yet in UPd,Al;, C, =
vsT + BT? [7] despite a T3> NMR or NQR relaxation
rate over three to four decades of the relaxation rate
[8,9]. This dichotomy appears to rule out the energy
dependence of the density of states N(w) as a root cause
of the universal relaxation rates. Qualitatively, the NMR
or NQR relaxation rate at temperature 7' scales as

(T)™" ~ T[N(w) w|S=) 4,7 » (1)
where

KolS«lw)? = KkIS«|kH28(w — Ex)d(w — Ex) (2)

is a momentum average of quasiparticle spin-matrix
elements. A 73 NMR or NQR relaxation rate in the
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presence of a finite quasiparticle density of states N(0) ~
v, leads us to speculate that in a HFSC, spin coherence
factors must scale linearly with energy

KolS«lw) ~ o. 3

In a BCS superconductor, the quasiparticles take the form
ax = uyckx + vyc —g, where

(lﬂkl2>=i[1+-—*—l } @
v ? 2 VT F (A/e)? |

Vanishing coherence factors occur when the magnitudes
lu > and |v,|* are equal, i.e., when Ag/ex — . At a
gap node Ax = 0, u, and v, are either unity or zero,
so quasiparticles are unpaired and coherence factors are
unity. Coherence factors that vanish at low energies
thus require a fundamentally new type of theory where
gapless quasiparticles are strongly paired. In this Letter
we show how the development of an anomalous pole in
a three-fermion channel leads to a singular gap function
Ag(w) « 1/w, whose divergence at low energies enforces
a linear energy dependence of coherence factors.

Our discussion hinges on a generalization of the con-
cept of field contractions to three-body bound states. To
illustrate this idea, consider the example of a 3He atom: a
bound state between a spin—% nucleus and two electrons.
In a many-body description, the >He atom is a bound-state
pole in a three-fermion channel. Low-energy correlation
functions of the bound fermions are determined by their
factorization into three-body contractions

1 .
DI RIN, (3) = / AL23.06, Wdx . 5)

where ®t(x) creates the He fermion at center of mass
x, i represents the electron fields, 2N the nucleus, and
A is the atomic wave function. The key observation is
that a new Fermi field ®,(x) is dynamically generated
by the development of a bound-state pole. The atomic
wave function A is a three-body amplitude that scatters
incoming fermions into the bound state.

With this picture in mind, we are led to generalize
the concept of three-body contractions to embrace the
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possibility of symmetry-breaking three-body amplitudes
that act as collective order parameters. Consider a
hypothetical bound triad of two electrons and a hole on
a lattice [10]:

T .
GI DY@y 3) = D Aupy(1,2,3;))d; . (6)
J

Suppose the three-body amplitude A,g, is complex and
carries the charge and spin of the bound state, transform-
ing like the electron field  under gauge transformations.
In this case, the residual fermionic pole at site j carries no
phase and must be represented by a “real” fermion

¢ =] (7)
A fermion of this type is a “Majorana fermion.” Unlike
a conventional fermion, its square is a pure number
¢f = %{¢j,¢j} = %; its bare Feynman propagator is
proportional to the inverse frequency

($5(@)p(~w)) = 8- @®)

and it is represented by a line without an arrow. A simple
consequence is that electrons scattering into the three-
body channel acquire an anomalous self-energy with a
singular, odd-frequency pole Ax(w) « 1/w (Fig. 1).

To make a link with heavy fermions consider the case
where the three-body amplitude is symmetric in positions
2 and 3, so that A,gy = —Ag,p. By contracting the spin
indices, we find

S .
[S() - 0upl¥p(@) = D AaL, 1L,2)G;, )
J

where S = 3 ytoy is the spin density and A, =
%ea,,sﬁyA,,ﬁy is a two-component spinor. This type of
three-body bound state thus describes a collective binding
of spins to electrons that is of particular interest in the
contest of HFSC.

Though a three-fermion state cannot condense [11],
the development of an anomalous three-body amplitude
does imply off-diagonal long-range order. The square
of Eq. (9) is a complex number, thanks to the Majorana
character of the pole. When we square the left-hand side

WUWQWMhAmz&n@

(b)

SORO=S

FIG. 1. Odd frequency pairing. Illustrating (a) anomalous
amplitude for three-particle bound state and (b) anomalous
pairing amplitude that scales as 1/w in this picture [12].
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of this expression we may cast it as the expectation value
of a composite operator

SWoy-e Qe = D A](1,2id0A;(1,3), (10)
J

where AJ-(I, 2) = A(1,1,2; j). Composite off-diagonal or-
der of this type between spin and singlet pair density has
been discussed in connection with odd-frequency pairing
[3,12,13].

We illustrate how this idea of three-body bound states
leads naturally to odd-frequency pairing within the Kondo
lattice Hamiltonian,

H=> et + 2 Himljl, (11)
k J

where ng is a conduction electron spinor, coupled to an

1 . . .
array of § = 5 local moments S; via an antiferromagnetic
exchange interaction

Hil j1=JW o) - S;. (12)

Here ¢; denotes the conduction electron in a tight-binding
representation. This Hamiltonian provides a toy model
for heavy fermion metals.

An electron scattering at site j couples directly to the
three-body spinor &;, = (S; - o4g)¢¥;s. To examine the
possibility of anomalous bound-state formation in this
channel, we use the result (S - o) = % — S - o to cast
the interaction in the form

Hinl[j1= —J(£]€). (13)
We apply our bound-state ansatz to &; by writing
—JEi(t) = 2V¢;(t) — JBE;(1), (14)

where V; is a two component spinor representing the
anomalous three-body amplitude, and & £; represents fluc-
tuations that are neglected in the mean-field theory. Next
we substitute (14) into (13) so that > ; Hin[j]1— H +
O(8£16¢), where

_ ; . viv,
H=22WNP&MW+H4+fT.(m
J

A remarkable result permits us to solve this mean-field
theory, despite the trilinear combination of field operators.
Consider the combination

Since ¢; commutes with the spin operator, it follows that
these operators are real n; = n; and satisfy a canoni-
cal anticommutation algebra, {77}, i} = 8§ k- In other
words, the fusion of ¢; with each spin—% operator trans-
mutes it into a fermion [14]. We can thus rewrite H as a
bilinear Hamiltonian
2vjv;
H = Z[t//;r(a' -m)V; + H.c.} + L
J

T, (17)
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This type of Hamiltonian was previously derived by
starting from a Majorana spin representation [12]. The
current discussion enables us to link the appearance of
fermionic spin modes and vanishing coherence factors
with the development of bound states. For convenience,
consider a cubic lattice. Here the mean-field free energy
is minimized in staggered configurations, where V; =
e!QRi2y  Q = (ar, 7, ) [12]. The staggered phase may
be absorbed by a gauge transformation of the electrons
Y — Yr+Q/2, which leads to the following mean-field
Hamiltonian:

Hurr = ng(//l]:lﬂk + Z[l/’lf(o' “)V o+ H.C.}
K 3
2viv

S J £
where N, is the number of sites and & = ex_qgsp. If
we represent the propagator of the Majorana fermions
by a dashed line without an arrow then the effect of the
anomalous three-body scattering amplitude is to introduce
vertices of the form

B a
VR

EPEE—

The main effect of these vertices is to introduce a singular
pairing self-energy into the electron propagators

(18)

B l/w a
— - D = [A(w)]aﬁ .

If we write V = (Vo/~/2)z0, where z is a unit spinor, then
the anomalous self-energy takes the form

Alw) = —A(w)[zo ® 251, (19)

where A(w) = V§/2w. By decomposing ¢ into four
Majorana components = (1/v/2) [y + ihy - o]z we
find that only the vector components hybridize with
the spin fermions: H = (V/2)>c[—iyn’ - mx + Hel].
These components develop a gap A, ~ V¢/D, while the
scalars remain gapless. Diagonalizing Humpr, choosing
z(;r = (1,0), the explicit form of the gapless quasiparticles
is

ax = VZiluxing + v gl + VT = Zemp . (20)

Here

uﬁ) 1 I: 1 i|
Y @
(Uﬁ 2 ! 1+ [Al@)/ px]? g, @b

where wux 1s the symmetric part of &, Zx =
[1 + ut/V?]™" and E, is the quasiparticle energy.
Unlike a Cooper-paired superconductor, the divergence
of the gap function at low frequencies leads to an equal
weight of particle and hole at the Fermi energy. The
coherence factor (w|S«|w) ~ u*(w) — v?(w) grows like
A(w)~! and is hence linear in energy.

In a conventional superconductor, the spectral weight
of the electrons that develop a gap is transferred to

the condensate. Here, the consistency of this model
requires that the gapped electrons combine to produce a
low-energy three-body fermion. The original model is
invariant under sign changes of the Majorana fermions
¢; — —¢; (n; — —mn;). This symmetry is broken by the
mean-field theory, which then allows for the possibility
of “kinks” in time, when the V; changes sign (Fig. 2).
These topological objects give rise to gapless fermionic
zero modes which we are able to identify as the three-
body bound states [15].
The operator P; that effects the Z, transformation
PP = —m; is
Py = —4%;n njn} 22)

where ®@; is an independent Majorana fermion introduced
to make P; a bosonic rather than fermionic operator. We
can sum over all tunneling processes by assuming that
the duration of a kink is extremely brief in comparison
with the delay between kinks, permitting us to associate
a fixed tunneling amplitude I' with a kink. A kink at
site k, time 7 (j = 1,n;), may be introduced into the
partition function by applying the operator P; to the
time evolution operator. The contribution to the partition
function associated with a set of kinks is

A} = T[T [T TP re Jotbomar],
ok

where the trace contains the trace over the & field.
Contributions from paths with odd n; are zero. The
complete partition function is obtained by summing over
all such paths

1 B
7z = {Z:}I:[(;l;; jl—ll j; dek>A{Tjk}.
My =Lng

This expression is recognized as the expansion of a simple
exponential, Z = Tr[e AWwrr+Hin)] where

Hiw = =21 > ®;n 777} . (23)
J
Free Energy
-V, +V,
+V° I-— [_

4

V(1) T ;. g
3

IR I |

FIG. 2. Kink configuration. Configuration with four kinks in

the order parameter V at a given site.
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Thus by taking account of kinks, we reveal the three-
body bound state, represented here by the Majorana
fermion ®;. This particle couples to the triplet of
gapped “vector” quasiparticles. Below the three-fermion
threshold 3A,, ®; propagates via the virtual excitation of
quasiparticles above the gap, forming a sharp three-body
band of width ~I'2/A,.

In essence, we have followed the consequences of
linear coherence factors to their logical conclusion.
Should these ideas prove relevant to HFSC, then there are
several interesting consequences. Vanishing coherence
factors should lead to the development of a quadractic
temperature or frequency dependence in a wide variety of
response functions [transverse ultrasound attenuation, the
depletion of the superfluid density Ap,, and the quasipar-
ticle conductivity o(w)], despite a linear specific heat and
an essentially isotropic thermal conductivity. In addition,
a superconductor with vanishing coherence factors will
exhibit a much larger Andreev reflection current than a
gapless BCS superconductor. Furthermore, the absorp-
tion of an incoming electron into a three-body bound state
within the condensate should result in the reflection of a
particle and hole, creating a diffuse Andreev scattering
background below T.. Finally, it is worth noting that
recent measurements on UPt; have observed a very large
low-temperature specific heat anomaly [7]. Conserva-
tively, this anomaly is a Pt nuclear ordering transition,
however, it could conceivably be a signature of a narrow
band of three-body bound states. In this speculative
scenario, the large specific heat anomaly would occur
without an NMR signature, but would coincide with a
corresponding anomaly in the thermal conductivity.

We have attempted to elucidate the physics of odd-
frequency superconductivity with the proposal that it is
driven by the development of an anomalous three-body
amplitude. Unlike a Cooper-paired superconductor, this
type of superconductor involves the cooperative pairing
of electrons and spins, and leads to the unique feature
of gapless paired quasiparticles with vanishing coherence
factors. We have speculated that this picture may prove
useful in developing our understanding of heavy fermion
superconductors.
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