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Low- Temperature Spin Diffusion in a Spin-Polarized Fermi Gas
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We present a finite temperature calculation of the transverse spin-diffusion coefficient D~ in a dilute
degenerate Fermi gas, in the presence of a small external magnetic field H. While the longitudinal
diffusion coefficient displays the conventional Fermi-liquid dependence, D~~ ~ T, the behavior of 0,
shows three separate regimes: (a) D~ —H 2 for T && H, (b) D, —T ', D~/D~~ 4 1 for T && H and
large spin-rotation parameter s » 1, and (c) D~ =

D~~ ~ T 2 for T && H and s && l. Our results are
qualitatively consistent with the experimental data in weakly spin-polarized -'He and -'He-'He mixtures.

PACS numbers: 67.65.+z, 51.10.+y, 51.60.+a, 67.60.Fp

The unusual features of spin dynamics in spin-polarized
quantum systems have attracted considerable interest,
principally motivated by the pioneering work of Leggett
and Rice [1] on spin diffusion in normal liquid He.
The main effect arises from the observation that the
presence of a molecular field (induced by the applied
magnetic field) leads to an additional precession of the
spin current which, in steady state, acquires a component
perpendicular to the magnetization gradient; through the
continuity equation this results in an anomalous reactive
component (damped spin wave) to spin transport. This
"spin-rotation" effect is also present in the case of spin-
polarized Boltzmann gases [2].

In addition, in the degenerate limit a finite polarization
leads to highly anisotropic spin diffusion, as proposed by
Meyerovich [3]. This suggestion was recently confirmed
by measurements of the transverse spin-diffusion coeffi-
cient in weakly polarized liquid He [4]. Theoretically,
D~ was calculated in the dilute gas limit at T = 0 [5,6],
and only an approximate estimate based on a variational
solution of the Boltzmann equation is available for T 4 0
[7,8].

In this Letter, we present an exact low-temperature
solution of the kinetic equation for a dilute, weakly
polarized Fermi gas, in the s-wave approximation. This
allows us to extract analytically (up to a summation
which must be done numerically) the finite temperature
behavior of D~. To the extent to which, in the limit
of small polarization, strong interactions only lead to
constant renormalizations of the weakly interacting result,
we expect that our findings should also apply to the case

of weakly polarized He. Indeed, as explained below,
the detailed low (H, T) behavior of our expression for
D& appears to be consistent with the small systematic
deviations (lying within the error bars) in the results of
Ref. [4] from previous theoretical estimates.

We note that the exact solution of the kinetic equations
does not merely lead to quantitative renormalizations
of the transport coefficients; rather, it brings out new
qualitative effects. In particular, due to the existence
of two dimensionless parameters, the low-temperature
behavior of transverse diffusion displays two crossovers,
the first at T —H and the other at T ~

QH eF/apt; (a is
the s-wave scattering length, ep is the Fermi energy, and

pF = $2me~). Spin diffusion becomes isotropic (i.e.,

D~ = D~~) only for T above the second crossover. This
latter behavior had already been found in the context of
Fermi-liquid kinetic theory in the limit of low polarization
(T )) H) [9]. However, the collision integral of Ref. [9]
cannot be used to describe spin diffusion in the opposite
case, T ~ H [10]. The correct high-field limit of D+ was
not known until the results of Jeon and Mullin [5]. On the
other hand, this and subsequent work [7,8] did not contain
the correct low-field behavior. The present work gives
the exact solution valid in the entire region, T, H « eI;.

Our starting point is the kinetic equation for the
Wigner transform of the transverse component of
the density matrix (in the frame rotating at the bare
Larmor frequency), nil(t, r, p) in the s-wave approx-
imation, where t, I. are the center of mass time and
space coordinates and p is the relative momentum
vector:

(
p+ ntl«. r. p) = nil(t. r i)
Pl dt'

4~a, t ), d'p'
i + B(p, p') n-, —n;, —A(p, p')I (2')'

d3 I

t + B(p, p) n —n —A-(p, p)- nil(t, i", p )I (27r)'

Here n„=(exp[(e-'„~ H/2 —eF)/T] + 1) ' are the
equilibrium distribution functions for up- and down-spin
particles, respectively, and e„= p /2m (we use energy

units for the field H and we set h = 1). The two terms
on the right-hand side of Eq. (1) correspond to direct and
exchange two-particle scattering processes. The functions
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A(p, p ) and B(p, p ) contain all effects of second order in apF and, in the limit of low temperature and small
polarization, T, H « eF, are given by

A(p, p') = ~a2 / (p2 + pI2)

p I, m

l( 1—4eF
~ n;, + n„-, —

) ( ~ " 1 —exp[(p2 + p'~) /2mT —(2eF/T)])
(2)

B(p, p') = 2a' i , [p —p'i + fp + p'[ )

Our Eqs. (1)—(3) were derived by using the Keldysh tech-
nique [11] and agree with the low temperature and low
polarization limit of the corresponding kinetic equations
of Ref. [10].

To compute the transverse spin-diffusion coefficient
we will solve the kinetic equations (1) and extract the
steady state transverse spin current driven by a constant
magnetization gradient. For simplicity we will consider

the case in which Mz(r)—:M~(x) with BM~( x)/8 x=
const.

With these assumptions the solution of the kinetic equa-
tion (1) can be taken to be of the form, nlrb(t, r", p) =
g(t, x, p) + f(t, x, p) cosP, where p =

~p~ and cosP =
p x/p. Performing explicit. integrations in Eq. (1) then
leads to the two coupled kinetic equations,

and

p ~f
ot 2m Bx

g(t, x, q) q dq n- —n„- — i(Nt —
Wt) g = I„,~[g] —i—I,.„[g]

4~a
(4)

Bf p Bg 4~a I„,~[f cosP] + ii,„[fcost/t]+ — — i Xt —N) f =—
Bt PE Bx I cosP

In (4) and (5) I„~ and I„represent the relaxational and spin-rotational parts of the "collision integral, "
3 / 3 /

I„,[g (p)] = W(p) A(p, p'), — A(p', P)W(p')2~' 2~''

(5)

3 /

I„[W(p)] = —W(p) B(p, p') n- —n-, 3 + n-, —n
(27r)'

d3 /

B(p, p') W(P') 2~''

inary part reflects the fact that, due to the spin-rotation
effect, the spin current is not parallel (in spin space) to
the driving magnetization gradient. We recall that in the
relaxation-time approximation [1] s = At'lr„, ~„, where
~„]„is the corresponding relaxation time. We note from
the outset that, except in the high-field regime, H» T,
the relaxation-time approximation breaks down and the
above parametrization of g is inapplicable. We are now
in position to compute D~ and g as functions of T and
H. As we show below, the calculation is tractable analyt-
ically in both "high"- and "low"-field limits:

High Field Behave-ar, H/T )) (apF)(T/eF). In this
case the relaxational term in (8) is small, I„,~~[f]
At'~f, and the current J~ is almost perpendicular to
the magnetization gradient. In this limit the solution of
Eq. (8), fo(p), can be obtained iteratively (in powers
of I/A~'~), leading upon integration to a corresponding
iterative solution for J~. In turn, using the constitutive
relation immediately yields,

VF7~
Dg = (9)

3

3'77 vF
2

8ma'(H' + 4~'T2) '

g = (n"~ + n~'l)r

9HvF 2 4
4a(H' + 4~'T') 1 + —apF 1 ——log2, 10

where 0, ( ~ is the second order contribution to the spin-
current precession frequency.
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As can be shown by analyzing the eigenvalue spectrum
of the relaxational part of the collision integral I„~~ [f],
the spin current decays to its steady-state value in a mi-
croscopic time scale ~& beyond which the time derivative
terms in Eqs. (4) and (5) can be omitted. In addition, since
BM&(x)/Bx = const or equivalently Bg/Bx is independent
of x, Eq. (5) implies Bf/Bx = 0. The solution of (4) can
then be shown to take the form go(x, p) = G(x)(n- —n„), -l

in which case the equation for f(p) becomes

v n„—n- -—iAt ~f(p) = —I„,~t[f(p)]
BG t y . (])
Bx

—iI., & [f(p)]. (8)

Here, vF is the Fermi velocity and II ' = (8~a/m)M~~ =
2apFH/n represents the leading correction to the pre-
cession frequency of the spin current, J~ —= J~ —i J& =
fo f(p)p3 dp/127r~m (M~~ is the longitudinal magnetiza-
tion induced by the field H). Note that no such correction
appears in the equation for the transverse magnetization
itself, M~

—= M~ —iM i

= fo g(p)p2 dp/4~2, i.e. , there
is no renormalization of Larrnor precession, as expected
from rotational invariance of the interparticle interactions.

To identify the diffusion coefficient we want to match
the conventional form [1,12] of the macroscopic constitu-
tive relation, J~ = —[D~/(1 —if)]„,M~, to the —one im-
ptied by the microscopic equation (8). Here, D~ is the
transverse spin-diffusion coefficient, while g is referred
to as the "spin-rotation" parameter. The nonzero imag-
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The first thing to stress is that the behavior of Di in

(9) differs significantly from that of the longitudinal spin-
diffusion coefficient [13], Dii = (uF/8vrma T )C( 1/—3),
where C(—1/3) = 0.843 is the Brooker-Sykes coefficient
[14]. The origin of this effect is the difference in phase
space restrictions associated with the scattering processes
leading to transverse and longitudinal spin diffusion in
the high-field limit. While collisions responsible for
longitudinal spin diffusion are restricted to energies within
keT of each of the ("up" or "down") Fermi surfaces,
those leading to transverse spin diffusion involve spin-
Aip processes which can also take advantage of the full
region enclosed between the two surfaces [5,7). Thus, the
expression for Di involves the phase space for scattering
generated both by the magnetic field as well as by the
thermal smearing of the individual Fermi surfaces. As a
result, the transverse diffusion coefficient in (9) remains
finite at T = 0 [3,4].

Also, for T » H [but still in the high-field limit,

!

H » (apF)T /eF] the transverse spin-diffusion coeffi-

cient Di = (3uF/327rma2T~) = 0.890Dii [9] still differs
from the longitudinal one. As we will see below, Di
and Dii become equal only at much lower fields, H—
(apF)T /eF. Finally, note that the diffusion time ro is
not the relaxation time of the spin current usually in-
volved in the phenomenological discussions: The latter
describes the relaxation of the distribution function to-
ward the steady state solution, fo(p), and would arise as
the eigenvalue of the relaxational part of the collision op-
erator [11].

Crossover and Low Field-Behavior, H/T (
(apF)T/eF. —In this region, I„,ii[f(p)]—
0(')f(p) » I„i[f(p)] and, therefore, the spin-rotation
terms in the collision integral may be omitted. Fur-
thermore, one may also set H = 0 in evaluating the
functional l„,i 1. By using methods of Ref. [14], the
steady state equation (8) [in terms of reduced variables,
ri = (e~ eF)/T, h = H/2T && 1, and I o = 2a m/3m]
can be transformed into the differential equation,

F"(k) —~ y F(k) ——F(k)sech hark =
3 3I pT Bx coshmk

'

for the function F(k) = f „e'""f(il) cos h( il/2) dpi. Here y~ = 1 —iA(')/37r21oT2 = 1 —2iHeF/vr~T~apF
The solutions to (11) may be expressed in terms of Gegenbauer polynomials [15] with a complex index,

F(k) = g, oF, @„(k),P„(k) = (coshvrk) i'C~ (tanbark), where

and

gn =

vph BG gn

7r I oT Bx
3 + (y + n)(y + n + 1)

'/'n+y+-, ' I y+-,'

3 cos I — —— I (1 + y + -)I (1 + —+ -)I

(12)

(13)

The transverse spin current can then be evaluated as Ji = (TpF/12vr2) j „dk F(k)/cosh~k = (TpF/l27r2) g„oF„a„
with

a„= ~I (y + 1)I (2y + n + 1)

n!cos 2 I (2y + 1)I 2
—

2 I (y + 2 + l)I (2 + 2 + 1)1 2
—

2
—

z

(14)

This allows us to write the final expression
Di

1 —i$

oo
1 uF gnan

4' ma T2 „o— + (y + „)(y + „+ 1)
(15)

from which we can extract Di and the spin-rotation pa-
rameter g. The low-field limit, H « (apF)T2/eF corre-
sponds to y 1 in which case (15) yields, Di = Dii =
(uF/8~ma T )C( 1/3). In this limit —the spin-rotation
parameter is given by g = 0.139HeF/T (apF) « 1, re-
flecting the fact that the spin current becomes paral-
lel (in spin space) to the driving magnetization gra-
dient. The detailed behavior of Di as a function of
T/H, which clearly displays the two crossovers discussed
above, is shown in Fig. 1. We note that our T = 0
results for Di agree with those of the calculations of
Ref. [5,6] and are also expected to agree with the fi-

nite temperature variational expression of Ref. [7] for
H » (apF)T /eF However, the .exact solution departs
from the variational ansatz at H —(a pF) T /eF, leading to
Di/Dii ( 1.

Although the calculations presented above are restricted
to low densities, we expect that our qualitative arguments,
based on the existence of two independent parameters,

and H/T (renormalized by the appropriate Fermi-
liquid parameters), should also hold in the Fermi-liquid
regime, T, H « eF (see the low-field discussion of
Ref. [9)). The s-wave approximation, which made our
analytical calculations possible, raises more serious issues,

1615



VOLUME 74, NUMBER 9 PHYSICAL REVIEW LETTERS 27 FEBRUARY 1995

0. 5-

0

0.1-

0.05-

0. 1 0. 15 0.2 0. 3

&/II

I

0. 5
I

0. 7

FIG. 1. Spin diffusion coefficient in the high-field region
H ~ T The tr.ansverse spin diffusion coefficient D~ [Eq. (9)],
the longitudinal coefficient D~~~, and the simple fit (I/D& +(o)

I/D~~)
' [4,8] for D~ (D~ = 37rtjF2/8ma H being the limiting

value of D~ at T ~ 0) are represented by the solid, dashed,
and dotted lines, respectively. The inset shows the ratio D~/Dt
near the second (low-field) crossover, T —T, =QHeF. /apF

especially concerning the detailed behavior of D & in
the crossover regions. Nevertheless, we expect that the
presence of two crossovers survives in the presence of
higher partial waves.

Some comments are in order concerning the possible
relevance of our findings to experiment. Even though,
strictly speaking, our analysis does not apply to the
strongly interacting case, it is worth noting that the
available experimental data in weakly polarized He [4]
deviate systematically from the simple theoretical fit
which uses a single adjustable parameter (T, in [4]) to
cover the entire temperature range, including both se )
I and se ( 1. Much better agreement is obtained by
restricting the fit to the se ~ 1 region with an overall
prefactor smaller than the one implied by fitting to the
value of D[] in the low-field, high-temperature regime.
This is consistent with our picture, with D& ( D~~ for
se ~ I and T )) H. In addition, although it appears
that the region between the two crossovers cannot be
clearly identified most likely due to large Fermi liquid
renormalization effects the isotropic limit is indeed
reached in the regime s» ( I [4]. In principle, our
calculations should be more relevant to the measurements
in dilute He- He mixtures. Although in the available
data (for 0.18% He) the crossover to the isotropic limit
occurs for s —1 with H (( T, the temperature is not
sufficiently far below eF, and, moreover, the polarization
is somewhat high, —25%. Nevertheless, for se ) I, D~ ~
D~~ with the ratio D&/D~~ ~slightly less than unity [16,17].
Also, the measured T dependence of the spin-rotation
parameter g near the crossover to the isotropic (low-
field) limit is qualitatively consistent with our results
in both the data of Ref. [16] and those obtained in
the degenerate regime of more concentrated solutions

(2.6% 'He) [18] with lower polarization (-2%). In
both situations, the crossover to the isotropic regime
can be clearly distinguished. The large discrepancy
in the magnitude of the shift of $T2 in the latter
case can be attributed to Fermi liquid renormalizations
anticipated in high concentration solutions. To sharpen
the identification of two crossovers the data of Ref. [18]
should be extended to lower temperatures (to study the
H/T —1 behavior). Quantitative comparisons could be
made only in the more dilute case of Ref. [16] where
lower field and lower temperature experiments should be
performed.
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