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Absolute and Convective Nature of the Eckhaus and Zigzag Instability
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Beyond the primary bifurcation, hydrodynamic pattern-forming systems often show a transition from
a structureless base state to a pattern of parallel lines. At the next bifurcation it is commonly observed
that these lines become unstable by the Eckhaus or the zigzag mechanism. In open flow systems, one
usually has to distinguish between the absolute and the convective thresholds of instability. This paper
investigates how an external How affects these secondary instabilities. It determines when a spatially
periodic line pattern becomes absolutely or convectively unstable with respect to Eckhaus or zigzag
perturbations. Experiments to test our theoretical predictions are suggested.
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During recent years, a lot of research activity has
been concerned with the study of the absolute and the
convective nature of instabilities [1]. These two different
types of instability appear in so-called open-flow systems.
To understand the onset of instability in an open system,
one has to distinguish between the temporal growth
behavior of spatially localized and extended perturbations,
which define the absolute and the convective threshold of
stability, respectively. Examples of stability problems in

open systems, which have been extensively investigated
both experimentally and theoretically, are the Rayleigh-
Benard convection with an imposed horizontal shear flow
[2—4] and the Taylor-Couette flow with an axial through-
flow [5—7].

Until now, the absolute and convective behaviors of
the primary bifurcation have been investigated, while no
attention has yet been directed to the secondary bifurcation.
We will fill this gap and investigate how an imposed flow
affects the onset of the secondary instability. As for the
onset of instability of the basic state, we expect that the sec-
ondary instability splits into absolute and convective ones.

We consider an open system where the primary insta-
bility results in a stationary spatially periodic line pattern,
and where the secondary instability is the Eckhaus (E) [8]
or the zigzag (ZZ) [9] mechanism. E leads to a spatially
periodic compression and dilatation of the line pattern if
its wavelength becomes too small or too large, while ZZ is
effective only if the wavelength becomes too large. The
generality and the broad observability of the E and ZZ in-
stabilities in pattern formation result from universal sym-
metry properties. Close above the onset of the primary
bifurcation, the dynamics of many systems is well repre-
sented by so-called amplitude equations, which in turn give
a reasonable description (albeit not always quantitative) of
the secondary E and ZZ instabilities. Amplitude equations
describe the slow spatiotemporal evolution of the most un-
stable mode. The numerical values of their coefficients

are specific for the physical system under consideration,
but the form of the equations is universal as they are based
on a few underlying symmetries. In what follows we study
how an external flow parallel to the pattern-forming plane
modifies the E and ZZ boundaries. We restrict ourselves
to weak flows, making the analysis analytically treatable.
Later we argue that our results concerning E also apply to
systems without an external flow, if traveling waves are
generated by a Hopf or a drift bifurcation.

We investigate a hydrodynamic system with large
lateral extent (x and y directions) and finite thickness
(z direction). If a control parameter, say e, is below
a threshold e,. the system is in its base state, which
is homogeneous and isotropic in the (x, y) plane. The
profile of any dynamically relevant field 4 (x, y, z, t) (e.g. ,

velocity, temperature, etc.) is thus of the form tIi = C&(z).
As e is raised above e,. , the uniform base state exchanges
stability with a forward bifurcating stationary line pattern
exp(iK r), where K = (K„K~) and r = (x, y). The
continuous spatial symmetry is broken in the direction
parallel to K, but conserved perpendicular to it. In the
absence of a lateral flow, the orientation of the pattern is,
of course, degenerate due to the isotropy in the pattern-
forming plane. In order to investigate the absolute and
convective nature of the E and ZZ instabilities, we impose
an external shear flow ReU(z)e„, which might be driven

by a pressure gradient or by moving boundaries. Here
U(z) describes the flow profile, while Re measures its
strength and thus the anisotropy of the system. We denote
patterns with wave vector K = (K, O) as transverse, and
those with K = (O, K) as longitudinal. As an example,
the reader may imagine the Rayleigh-Benard system in a
large-aspect-ratio container subjected to a horizontal shear
flow. Generically the velcoity field u(x, y, z, t) enters the
dynamics of a transported globally conserved quantity 4
via the convective nonlinearity (u V)4. Therefore the
imposed shear flow field leaves the base state profiles
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iIi(z) unchanged. However, the evolution equations for
the convective deviations p(x, y, z, t) are supplemented by
linear contributions of the form ReU(z)B, p. Thus for
small How rates, the linear dispersion for the disturbance
p ~ exp(ik r + st) of the base state may be expanded
in the form

s(k, e, Re) = so(k', e) —ik, Res((k', g)
—(k, Re) s (k, e) + O(Re'),

where the s; are real functions and k = (k„kY). This re-
sult is essentially a consequence of Squire's transforma-
tion [10], saying that the imposed shear flow enters the
problem in form of the produce combination k, Re. In
what follows the investigation of longitudinal and trans-
verse patterns needs a separate treatment.

We start with longitudinal patterns being of the form
8(x, y, t) exp(iK, y) + c.c., where K,. is the wave number
at onset of the primary instability. The linear envelope
equation for B may be obtained by introducing k =
(Bk„K,. + Bk, ) into Eq. (1) and expanding s for small
l5 kz& 6 ky and e. By translating i 6 kz Bz &

E 6 ky lay &

and scaling time, space, and amplitude appropriately, we
get the amplitude equation for the longitudinal pattern

(a +vs, )8= g+ a, —i
' +ma,' —181' B.

C

Here the (y —y) reflection symmetry holds, so all co-
efficients are real, and v(A) is linear (quadratic) in Re as
it is related to the second (third) term on the right-hand
side (RHS) of Eq. (1). Linear terms of the form i(BY—
i B~/2K, )B, and .i(~)&,

—i R2/2K, )82 have been suppressed,
because they do not contribute to the leading order results
presented below. Moreover, a cubic nonlinearity has been
added to guarantee saturation. The phase winding solution
of Eq. (2) 8 = Bi, exp(iky) represents a stationary longitu-
dinal line pattern with wave vector K = (O, K, + k) and
amplitude 8& = Qe —k2. We investigate the stability of
this solution by imposing perturbations of the form 6B =
exp(o. t + iky) [68~ exp(iq r) + BB2exp( —i q* r)] (the
star denotes complex conjugation) which leads to the dis-
persion relation

bations (q, real) define the convective onset kz, By an
expansion in powers of Re we find at lowest order

kzc AK +

Here and in the following the dots abbreviate higher order
corrections in Re. In comparison to the classical ZZ
boundary, kz = 0, the convective onset is delayed by an
O(Re2) contribution (recall that A is quadratic in Re). To
determine the absolute onset one has to investigate the
linear growth of spatially localized perturbations. To this
end, we solve the initial value problem for BB(x, t) with
Dirac s delta function being the initial local disturbance.
This can be done by the Fourier technique where we
evaluate the leading behavior of the inverse transform
by the method of steepest descent [4]. The long time
asymptotic solution is determined by integrating in a
small neighborhood of the actual saddle points q' of the
dispersion o.(q„k). Figure 1 sketches the position of the
saddle points in the complex q plane and shows how
the original path of integration (along the real q, axis) is
deformed to the steepest-descent contours C] + C2. The
absolute threshold for the ZZ instability at k = kz, is
defined by requiring that the real part of cr(q', k) changes
sign. For' small Row rates Re, the coupled conditions
do. (q„k)/dq, = 0 and %[cr(q„k)] = 0 ()t real part)
therefore yield

(v'K,')'l' = —0.46(v'K,')'l'. (6)

Thus the delay of the absolute onset is proportional to
Re / . Figure 2 summarizes the stability results for longi-
tudinal patterns. As long as the disturbances are spatially

q',

1
o(q, k) = —IBI, I' ——(U + U-)

2

IBu I' + —(U+ —U-)',1

&i,

0 Real 0

2 2

~q, , + —k +iraq +Aq
2K,

The E instability is obtained by putting q = 0. Since
all Re-dependent terms drop out in Eqs. (3) and (4),
the classical boundary, ep = 3k, is unaffected by the
Row. To study ZZ perturbations we put q, = 0 and find
o.(q, k) = —U+. Spatially extended plane wave pertur-

FIG. 1. The saddle points q,';, i = 1, 2, 3 (defined by
do. /dq, = 0) and the corresponding steepest-descent contours
C; (defined by [o —o.(q,')] = 0) of the dispersion o. as
given by Eqs. (3) and (4) with q&,

= 0. The absolute onset of
ZZ perturbations is determined by a Fourier integral of the
form f(. .) exp(o. t + iq, x) dq„evaluated along the real q,
axis. We deform the path of integration to the steepest-descent
contours Cl + C&, so that the asymptotic behavior for ZZ
perturbations, as t ~, is obtained by integrating in a small
neighborhood of the saddled points q'12. The saddle q,'3 does
not contribute.
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Q(e —e, ) —k2 and ru = vk + (e —e, ) (cz —co) +
(c) —c2)k represents a traveling transverse line pattern
with wave vector K = (K, + k, 0) and frequency 0 =
0, + co. The stability may be investigated by superim-
posing perturbations of the form BA = exp[crt + i(kx-
tut)][BA) exp(iq r) + BA2exp( —iq' . r)], which leads
to the dispersion relation

~(q, k) = —la„l' ——(U+ + U )
2

1
lakl + (U+ —U ) + ic2lakl'(U+ —U-),

4

localized, stable line patterns may exist in the shaded area.
The uniform base state is absolutely unstable above the
horizontal line e, = s[v /(4A)]'t [3,4]. Consequently,
there is a small subregion of bistability in the darkly
shaded tip of the parabola. In order to test Eq. (6) experi-
mentally, we suggest a Rayleigh-Benard setup in a long
rectangular channel subjected to a horizontal through-
flow. If the convective roll pattern is aligned to the
flow, the wave number K, + k can be tuned externally
by varying the distance between the sidewalls. By in-
troducing small localized perturbations in the convective
bulk region, this technique may be used to detect the onset
value kz

We now turn to the discussion of the transverse pattern
A(x, y, t) exp[i(K, x —A, t)] + c.c., where fi,. ~ Re is the
frequency at the onset of the primary instability. Just as
in the derivation of Eq. (2), the amplitude equation for A

can be computed by introducing k = (K, + Bk„6kY) into
Eq. (1) and expanding. One finds

(8, + vB )Ii = (i + icc) (c —c, ) + (i + icI) (8

+ tg(1 + tc3)() —(1 + tc2)lAl A. (7)

The threshold shift e, is of second order in Re while
all other coefficients are linear. Terms of the form
(1 + ic )4()2,()and i(l + icq)84 have been dropped, since
they do not influence the results below. The phase
winding solution A = A(, exp[i(kx —rut)] with At, =

wave number k

I IG. 2. Stability diagram of the line patterns with wave
vector K, + k aligned parallel to the shear How. Above
the horizontal lines e, (e, = 0) the homogeneous basic state
becomes absolutely (convectively) unstable. e„= k~ denotes
the neutral curve and eE = 3k the E parabola. The vertical
lines kz, = O(Re't') and kz, . = O(Re') [see Eqs. (5) and (6)]
mark the absolute and convective onsets of the ZZ instability,
respectively. In the absence of spatially extended perturbations,
line patterns may stably exist in the shaded region. The dark tip
of the parabola is a region in which longitudinal line patterns
as well as the structureless base state may exist.

2
equi. = 3k 1 + cz(c2 —c() +

3
(10)

Depending on the imaginary parts c] 2, the correction to 3k
may be either stabilizing or destabilizing. The absolute E
boundary (q complex) is again determined by the saddle
points q, of the dispersion o.(q, k). The conditions for the
onset of instability, drT/dq, = 0 and 9t[(T] = 0, yield

JV —2
ee, = 3k —,k [v + 2(c) —cz)k]

3 —y7 't'
= 3k —0.91 k [v + 2(c, —c )k]4

Again, the absolute threshold is delayed by an O(Re2t')
contribution [12]. At this stage it is worth mentioning that
the phenomenon of absolute and convective instability is
not only restricted to open flows. Amplitude equations
of the form of Eq. (7) with B~ = 0 also occur in closed
systems where a Hopf (e.g. , in binary-mixture convection)
or a drift bifurcation generates traveling waves. Recently
the convective E boundary (10) has been investigated
theoretically and experimentally by Janiaud et al. [11].
In the fingering instability [13], one observes a drift
instability from a stationary to a traveling pattern. This
spontaneous propagation is related to a breakdown of
the (x —x)-parity symmetry of the pattern [14]. The
coupled equations for the phase P of the pattern and the
asymmetry parameter W lead to a pitchfork bifurcation
of A. with a related phase frequency B,P (x A. If
one introduces this phase propagation into the evolution
equation for the symmetric part S of the order parameter,
one arrives again at Eq. (7) with i)~ = c, = 0 and v ~ A. .

Provided the coefficients v and c; are small enough for
our Re expansion to be valid, the E stability boundaries

2

U = k+ q, + —k (1 ~ic()
2K,

f q,'5~ ivl ~q + ~ i~(1 4- ic3)q . (9)2K, )
For E perturbations (qY = 0) the leading order Re expan-
sion gives (in agreement with [11])the convective stability
boundary (q, real) at
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parallel or perpendicular to the line pattern is imposed.
The restriction to weak shear-flow rates (small Re) allows
analytical formulas for the threshold shifts. The results
concerning logintudinal lines are presented in Eqs. (5)
and (6) and Fig. 2, while those for transverse patterns
are given in Eqs. (10)—(12) and Fig. 3. The convective
onsets are being shifted proportional to Re, while the
absolute thresholds are delayed by an amount of the
order of Re ~ . Since the analysis is performed in
terms of amplitude equations, the results are system
independent, but confined to the neighborhood of the
primary bifurcation.

Support by Deutsche Forschungsgemeinschaft and the
EU is gratefully acknowledged.

FIG. 3. Stability diagram of traveling line patterns with wave
vector E, + k aligned transverse to the shear flow. Above the
horizontal lines e„(e,) the homogeneous basic state becomes
absolutely (convectively) unstable. e„= kz denotes the neutral
curve. The lines ee, and ee, according to Eqs. (10) and (11)
represent the convective and absolute E stability boundaries,
respectively. At the vertical line kz, = kz, = kz [Eq. (12)],
line patterns become absolutely and convectively unstable
to ZZ perturbations. In the absence of spatially extended
perturbations, line patterns may stably exist in the shaded
region. In the dark tip of the parabola, both lines as well as the
convetionless state may exist.

given in Eqs. (10) and (11) are expected to apply to
those closed systems too. Recently Pan and de Bruyn
[13] observed the E instability of nonuniform traveling
wave patterns. It will be interesting to see whether the
velocity dependent Eckhaus shift predicted by Eq. (11)
can be measured in this experiment.

To complete the investigation of transverse patterns we
consider now the ZZ instability. By imposing q = 0 in
Eq. (9), one finds a purely real dispersion o.(qY, k). The
convective and absolute thresholds therefore coincide, and
we obtain

C2V
kz = kz = kz = + IC,g(c2 c3) +, (12)

i.e., a shift of O(Re ). Figure 3 summarizes the stability
results for traveling transverse line patterns. Spatially
localized perturbations allow stable patterns to exist
within the shaded region. Above the horizontal line
e, = e, + v2/[4(1 + c&)] the convectionless base state is
absolutely unstable. Thus the dark area is again a region
of possible bistability.

We have investigated the absolute and convective
onsets of the E and the ZZ instability if a shear How
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