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Synchronization Induced by Temporal Delays in Pulse-Coupled Oscillators
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We derive return maps and phase diagrams to identify mechanisms of synchronization of pulse-
coupled oscillators and emphasize the importance of temporal delays and inhibitory coupling. Optimum
synchronization between two oscillators is obtained for inhibitory coupling, where delays give rise to
stable in-phase synchronization; those with excitatory coupling only synchronize with a phase lag.
In large ensembles of globally coupled oscillators the delayed interaction leads to new collective
phenomena like synchronization in multistable clusters of common phases for inhibitory coupling; for
excitatory coupling a mechanism of emerging and decaying synchronized clusters prevails.

PACS numbers: 05.45.+b, 87.10.+¢

Synchronization of coupled oscillators is a widespread
phenomenon occurring in physics [1], chemistry [2], and
biology [3]. Theoretical efforts toward a mathematical de-
scription of synchronization were stimulated considerably
by the discovery of synchronized firing activity of neurons
in the central nervous system [4,5]. Here the synchro-
nization of neurons is believed to represent the binding
of object features, a problem of outstanding significance
for information processing in the brain [6]. Abstracting
from biophysical details, neurons belong to an important
class of oscillators characterized by a pulselike interac-
tion, i.e., where the coupling consists in the transmission
of a short pulse from an oscillator to its partners. For an
understanding of the general principles underlying syn-
chronization phenomena, it is useful to consider abstract
oscillator models which subsume various existing models
under very general assumptions and can be treated con-
veniently. Assuming such a model, Mirollo and Strogatz
[7] have proved rigorously that globally pulse-coupled os-
cillators always synchronize with zero phase difference.
This result pertains only to excitatory couplings, in realis-
tic applications, however, one is also confronted with in-
hibitory couplings, which are abundant, e.g., in the central
nervous systems and whose importance for synchroniza-
tion was pointed out recently [8]. Furthermore, in most
applications the transmission of a pulse requires a finite
propagation time. It is an important question, how syn-
chronization over long distances can be achieved when
such temporal delays prevail (like in the visual cortex [9]).

In the present Letter we want to identify general mecha-
nisms of synchronization in cases where delays and also
inhibitory couplings are present. We demonstrate that
even in the presence of delays a return map can be deter-
mined analytically for two coupled oscillators. The return
map proves to be very useful for understanding synchro-
nization phenomena and deriving phase diagrams from its
basins of attraction. In particular, while one might have
expected that inhibitory coupling tends to prevent syn-
chronization or admits out-of-phase synchronization only,
we find that the presence of delays and even arbitrar-
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ily small delays leads to stable in-phase synchronization.
For excitatory coupling, on the other hand, the presence
of delays causes the synchronization to get out of phase
by a finite time lag. Thus, if stable in-phase synchroniza-
tion is required in the presence of transmission delays,
we conclude that this can be achieved best by inhibitory
coupling. We believe that this mechanism explains the
precise synchronization in populations of flashing fire-
flies [10], and may turn out to be substantial for feature
binding in the brain by ensuring synchronization of dis-
tant neurons. The return maps also serve to understand
our numerical results on the collective dynamics of many
globally coupled oscillators. For inhibitory coupling the
delayed interaction gives rise to multistable clusters syn-
chronized in common phases. The network as a whole
then oscillates at a multiple of the single oscillator fre-
quency, a fact which was also observed experimentally in
the hippocampus of the rat [11]. For excitatory couplings
we report a new phenomenon of spontaneous emergence
and decay of synchronized clusters.

Considering pulse-coupled oscillators, an individual
oscillator i may be described by a smooth function f(®;)
which is concave down and monotonically increasing
[f>0, f7<0, f(0) =0, f(1) = 1]. f plays the role
of an amplitude and ®; € [0,1] is a phase [7], which
in the case of vanishing input from other oscillators
corresponds to the normalized time elapsed since the
last firing of i. These mathematical conditions including
the concavity condition are fulfilled by many models
of relaxation oscillators; as a simple example we only
mention that leaky integrate-and-fire neurons without
mutual interaction obey the differential equations

dfi
6{‘[ = —c1fi + fori =1,...,N. (1)
When f reaches a threshold f; := 1, the oscillator fires

and ®; and f are reset to zero. Caused by the firing,
the amplitudes f(®;) of all the other oscillators are raised
(excitatory couplings) or lowered (inhibitory couplings)
by an amount € = €*(N — 1)~', where €* denotes the
normalized coupling strength (e* € [0, 1]). The coupling
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to the oscillators j may be represented equivalently by an
increase or decrease in phase A®;

®; + AD; = fT(min[f(P)) + €,1]),  (2a)

D; + AD; = f ' (max[ f(P;) — €,0]), (2b)
where Eqgs. (2a) and (2b) refer to excitatory and inhibitory
coupling, respectively. We point out that the concavity
of f is responsible for the dependence of A®; on
@;, the larger the phase ®;, the larger the phase shift
A®;. In the present Letter we focus on the effect of
a finite transmission delay = < 0.5 in this model, which
represents the (normalized) time a pulse needs to travel
from one to another oscillator.

In the case of two oscillators (N = 2, € = €") with
phases ®, and @z, a return map ®**! = R(d*) can
be defined by considering the phase difference ®* :=
Dp(ty) — Da(2y) = Pp(ty) for times ¢, when oscillator A
fires [®4(7x) = 0]. Performing a detailed but straight-
forward mathematical analysis one can determine R
analytically for all f(®) obeying the above conditions.
Because of the delay a number of 0 to 2 pulses can be
emitted without being received at time ¢ = ¢,. For this
reason and for the min and max conditions in Egs. (2a)
and (2b), the derivation of R requires numerous case
distinctions and will therefore be published elsewhere

[12]. For brevity we only give the graphs of R in
Figs. 1(a) and 2(a). For these figures we have chosen
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FIG. 1. (a) Return map R for excitatory coupling of strength

€ = 0.1 with delay 7 = 0.2. Two stable fixed points lead to
asymptotic out-of-phase synchronization with phase difference
®* = 7. (b) Phase diagram determining the asymptotic be-
havior in dependence of the coupling strength € and the initial
phase difference ®°. Out-of-phase synchronization with phase
lag = is stable everywhere apart from the upper left corner
where synchronization with phase lag smaller than the delay is
possible. The dotted line denotes the parameter value € of the
particular return map shown in (a).
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FIG. 2. (a) The return map R for inhibitory coupling with
e = 0.1 and 7 = 0.2 shows two stable fixed points giving rise
to in-phase (> = 0) or antiphase (®* = T/2) synchronization.
The respective basins of attraction determine the phase diagram
(b) as indicated by the dashed lines for the particular value
of € under consideration. For intermediate values of e,
the oscillators always fire simultaneously. Large e leads to
marginally stable synchronization with phase lag ®* = 7.

f(@) to be f(®) =b""In[l + (¥ — 1)®] with b = 3,
whereby R becomes piecewise linear. Qualitatively the
return maps do not change for other admitted choices
of f(®). Iteration of R gives us the time evolution
®* and in particular the asymptotic phase difference
®* := lim—- ®*. As was shown rigorously in [7], ex-
citatory coupling without delay always leads to in-phase
synchronization (®” = 0). Here, for a finite delay 7, the
return map has two stable fixed points at 7 and f~!'(1 —
e) — 7 [Fig. 1(a)], where in both cases the oscillators
synchronize with a phase lag ®* = 7. Investigating the
return map for all parameters € € [0, 1], 7 € [0,0.5], and
®° € [0,1] we can analytically derive a phase diagram
[Fig. 1(b)]. It gives the asymptotic behavior in depen-
dence of € and the initial phase ®°, while the dependence
on 7 shows no additional features. Out-of-phase synchro-
nization with ®* = 7 is stable for all parameter values
apart from the upper left corner [above € = 1 — f(7)],
where synchronization with phase lag smaller than 7 is
possible depending on ®°, but in-phase synchronization
remains forbidden except for ®° = 0.

For inhibitory coupling the delay leads to three sce-
narios depending on the inhibition strength €. For e <
1 — f(27), the return map has two stable fixed points at
®=0and®=1+7— f'[f(® + 7) + €] as shown
in Fig. 2(a). The oscillators therefore synchronize either
in phase @ = 0 or in antiphase ®* = T/2, depending
on their initial configuration ®°, where T = T(¢) denotes
the average period between two firing events of one os-
cillator. The phase diagram Fig. 2(b) is obtained from
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the respective basins of attraction (dashed lines) as the
particular value of e (dotted line) considered in the re-
turn map is varied. For 1 — f(27) < e < f(r), the sec-
ond fixed point disappears and the two oscillators always
synchronize with zero phase. Still larger values € > f(7)
give rise to marginally stable synchronization with vari-
able phase lag ®* € [0, min{r, f~!(e) — 7}], similarly as
for excitatory couplings. The remarkable mechanism of
in-phase synchronization (&> = 0) caused by the delay is
directly related to the concavity of f. Consider a time
tx where two pulses have been emitted but not been re-
ceived yet. This is always the case for ®° smaller than
the delay 7. After receipt of the two pulses the oscilla-
tors have lowered their amplitudes f(®,4) and f(Pp) by €.
The phase reset of the oscillator with the larger absolute
phase is larger than the phase reset of the other oscillator
such that the phase difference is decreased successively,
whenever this happens. It is important to note that this
analysis only depends on the function f being monotoni-
cally increasing, concave down and smooth, and not on a
specific oscillator model.

Such models may be rather simple like integrate-and-
fire oscillators or more complex like the Hodgkin-Huxley
neuron. Nevertheless, many of them may be subsumed
under these rather general assumptions such that we may
expect the same synchronization mechanisms to occur
[13]. As an example we mention coupled McGregor
neurons [14], for which our simulations showed the same
phenomenology of delay-induced clustering [15]. For
more detailed oscillators and more complex interactions,
however, our phase description is only approximate [16]
and in general might apply only in the limit of weak
interaction.

For N > 2 oscillators we can describe the state of the
system by a vector II containing the phases ®; and the
times 7; elapsed since the last spike of each oscillator i,
I(t) :={P,,..., Dy, 7,...,7n}, if Oone oscillator cannot
spike twice during a time r = 7. Choosing a reference
oscillator j, we can construct a time-discrete function Ry,
the N-dimensional return map, which maps TI(#) onto
II(#;+,), where t; is the time when oscillator j fires for
the kth time

Ry @ T(tx) = I(tx+1) = Ry(IL(1)) . (3)
In the case of N = 2 oscillators, R, equals R if we
demand that ®, = 7, at #; (for ®, < 7), R(®) := R,(II).
The function R then is one dimensional and does not
depend on 7,. For a given f, the dynamics of the phases
®; can be written as

dq),'/dl = wqo + w((I)i), 4)
where wo is a constant phase shift, w(®;) denotes an
instantaneous phase velocity which for small € becomes

N
0 (@) = e/f[P:D]D 6 — 7 — 1;%), (5
J

where the + and — signs refer to excitatory and inhibitory
couplings, respectively, and ¢;* is the time when oscillator
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J has fired last. Starting with TI(0), one can calculate
I1(z;) analytically in an iterative procedure.

Our numerical results for the time evolution of N =
100 oscillators with excitatory couplings exhibit a clus-
tering [Fig. 3(a)] with spontaneous synchronization and
desynchronization. To probe for stability a small amount
of noise was added. Stable clusters of synchronous os-
cillators are formed, but become unstable after a time.
Apparently a cluster destabilizes when the neighboring
cluster has desynchronized. This behavior might be re-
lated to the fact that the fixed point of R at ® = 0 is un-
stable while the fixed point at & = 7 is stable [Fig. 1(a)].
Single clusters seem to be unstable but serve to stabilize
others.

In contradistinction to the former case, we find
(multi)stable  clustering for inhibitory  couplings
[Fig. 3(b)]. Despite random initialization stable clusters
of synchronized oscillators are formed. The average
number N, of clusters follows the power law N, = 77!
as a function of the delay (Fig. 4). Solutions with less
than N, clusters and even the fully synchronized solution
where all the oscillators fire simultaneously are stable,
too. This behavior is analogous to the existence of
several stable fixed points and basins of attraction of
R [Fig 2(a)] which lead either to in-phase or antiphase
synchronization. The fixed points of Ry act as attractors
or repellors, synchronizing those oscillators that are in

0 100 k
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FIG. 3. (a) Stroboscopic picture of the time evolution of
the phases of N = 100 oscillators with excitatory couplings
(r = 0.15, € = 0.2) displaying the emergence and decay of
synchronized clusters. & counts the periods of a fixed but
arbitrary reference oscillator. (b) Same as (a) for inhibitory
couplings and 7 = 0.2, € = 0.2. The delayed interaction leads
to stable clustering in three different phases depending on the
delay. The network frequency increases almost by a factor
of 3.
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FIG. 4. The average number of stable clusters nearly follows
a power law N, ~ 77! as a function of the delay 7 shown here
for e = 0.2.

the same basin of attraction. The number N, of clusters
is determined approximately by the mean firing period
T divided by the size I4 of the basin of attraction of R
at ® =0: N, = T/ly. Stable clustering leads to new
effects for the overall network firing activity where the
individual spiking events are summed up. Assuming M
stable clusters, the network as a whole fires at a multiple
of the single frequency fnee = M/T. This might be an
explanation of the frequency doubling and tripling found
in the hippocampus of the rat [11], a system in which
inhibition dominates and where single neurons fire with
a maximum frequency of 100 Hz, while measurements
of the network activity have detected oscillations of 200
and 300 Hz, respectively. We have checked that the
phenomenon of multistable clustering described above is
robust against the fluctuations of the delay times among
the oscillators.

In the limit of large populations of oscillators, we can
describe the high dimensional dynamics by a nonlinear
delayed inhomogeneous partial differential equation for
the density of phases [2]:

ap/dt = —d(wp)/oP, (6)

with periodic boundary conditions p(0,7) = p(1,¢). Here,
p(®,1)dd is the portion of all oscillators with phases
in [®,® + dP] at time r. According to the discrete
dynamics [Eq. (4)], the phase velocity w depends on the
firing history p(0,7 — 7), on the phase ®, and on the
coupling strength e

w = wox e /f(P®)pO0,1 — 7). )
Synchronized clusters are represented by peaks in p
and numerical evaluations of Eq. (6) show the same
phenomenology as the discrete dynamics. It should be
noted here that Eqgs. (6) and (7) complement previous
approaches to synchronization of pulse-coupled oscillators
[2,17,18] where the effects of variable phase velocity were
not taken into account. Extending Eq. (6), a probabilistic

firing of the oscillators can be included by adding a term
—pysp to the right-hand side as discussed in Refs. [2,19].
Here, py is a rate function depending on the phase and the
previous activity of the network.

We thank H. U. Bauer and J. Deppisch for most fruitful
discussions.
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