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Adiabatic Cooling of Cesium to 700 nK in an Optical Lattice
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We localize Cs atoms in wavelength-sized potential wells of an optical lattice, and cool them to a
three-dimensional temperature of 700 nK by adiabatic expansion. In the optical lattice we precool the
atoms to =1 p, K. We then reduce the trapping potential in a few hundred p, s, causing the atomic
center-of-mass distribution to expand and the temperature to decrease by an amount which agrees with
a simple 3D band theory. These are the lowest 3D kinetic temperatures ever measured.

PACS numbers: 32.80.Pj, 42.50.Vk

Periodic optical potentials, or optical "lattices, ' are
formed by the light shifts experienced by atoms in the
interference pattern created by multiple laser beams.
Studies of one-dimensional (1D) lattices observed atoms
localized in individual potential wells with center-of-mass
(c.m. ) motion in the quantum regime [1—3]. Recently,
optical lattices have also been demonstrated in two and
three dimensions [4—6]. We report the use of a 3D optical
lattice to simultaneously localize and cool Cs atoms to
a temperature of =1 p, K. This temperature is approxi-
mately 2 times lower than the minimum temperature
of 2.5 p, K [7] measured in Cs optical molasses [8].
Adiabatic expansion of the atomic c.m. distribution is
used to reduce the momentum spread further, resulting
in a sample of free atoms with a 3D kinetic temperature
of 700 nK. This corresponds to an rms velocity less than
twice the single photon recoil velocity. A simple band
theory analysis predicts the adiabatic cooling limit as
a function of lattice periodicity and initial temperature,
in good agreement with our experiment. In an earlier
experiment, Chen et al. reported 1D adiabatic cooling of
a Li atomic beam passing through a strong standing wave,
to a temperature of 12 ILK (two recoil velocities) [9].

Our 3D optical lattice is formed by the interference of
two pairs of linearly polarized laser beams intersecting,
as shown in Fig. 1. The use of only four laser beams
ensures an interference pattern which is unchanged by
fluctuations in the phases of the beams, apart from an
overall translation [5]. The directions of propagation and
polarization of the lattice beams deviate from the geometry
of Fig. 1 by less than 10 mrad, with intensity variations
below ~5% across the relevant part of each beam profile.
The lattice beams have a typical intensity of 0.5 mW/cm,
and are tuned 25 linewidths below the 6S~I2(F = 4) ~
6P3I2(F' = 5) transition at A = 852 nm. The resulting
light field has points of pure o.+ and o- polarization,
each forming a centered tetragonal lattice, with a spacing
between o.+ and o. sites of A/2~2 along z and A/~2

along x and y. Polarization gradient laser cooling causes
Cs atoms to become tightly bound at these lattice sites [10],
which are the minima of optical potential wells for the
states F = 4, mF = ~4. Repumping from the 6SJ/2(F =
3) hyperfine state is provided by a separate laser.

We load the lattice with Cs atoms by superimpos-
ing a magneto-optical trap (MOT) on the lattice volume.
The MOT initially captures Cs atoms from a chirp-cooled
atomic beam, producing a dense (10' cm [11])sample
of cold atoms in a volume =300 p, m in diameter. The
MOT magnetic field is then switched off, leaving an op-
tical molasses which cools the Cs atoms to = 3 p, K. The
molasses laser beams are extinguished, leaving the atoms
in the presence of the optical lattice only. The atoms equi-
librate in the lattice for 10 to 20 ms, after which adiabatic
expansion is accomplished by a decrease in the lattice light
intensity according to l(t) = I(0)/(1 + 1 At), with a typi-
cal I ~ = 10 s '. The expansion proceeds during an ad-
justable time r, and is terminated when atoms are released

FIG. 1. Our optical lattice configuration. The lattice is
formed by two pairs of linearly polarized beams. The z axis
bisects the angle 0 formed by each pair. The x axis is vertical
andO =90.
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FIG. 2. (a) Typical time-of-flight spectrum. (b) Reduction in
3D temperature as the lattice light intensity is reduced at a
rate I„= 1 X 104 s ' (filled circles). The solid line is the
reduction in temperature expected for a harmonic oscillator.

from the lattice by rapid ((I p, s) extinction of the lattice
light. The 3D velocity distribution of the now free atoms
is determined by measuring their spatial spreading during
the 100 ms flight time to a 0.5 mm thick horizontal sheet
of probe light located 5 cm below the lattice volume. The
vertical velocity distribution (along x) is obtained from the
time dependent fluorescence from atoms falling through
the probe beam, while the distributions along y and z
are measured by imaging the fIuorescence in the horizon-
tal plane. We determine the rms momentum spread for
each degree of freedom based on a Gaussian fit to the ve-
locity distributions, and assign a "temperature" given by
3kpT/2 = [(p, ) + (p~) + (p, )]/2m as a measure of the
kinetic energy of the atoms. At the lowest lattice light
intensities the time-of-Aight signal contains a background
prior to the arrival of the cold atoms. This we ascribe to
atoms that escape from the lattice during the initial equili-
bration phase, a phenomenon that, along with the general
steady state conditions in the optical lattice, is still under
study. With this background included in our fits the time-
of-Dight distribution is indistinguishable from a Gaussian
within signal to noise [see Fig. 2(a)]. We estimate an un-

certainty [12] of ~3% on (p ), and ~15% on (pY), (p, ).
The larger horizontal uncertainties arise mostly from sys-
tematic error due to nonlinearity and inhomogeneity in the
intensified charge coupled device imaging system. Differ-
ences between momentum spreads along the different axes
are typically within estimated uncertainties.

As a first, albeit naive, model we assume that atoms
localized near the bottom of deep optical potential wells
have c.m. motion well approximated by a thermally ex-
cited 3D harmonic oscillator. The oscillation frequencies
for atoms in the states mF = ~4 are then

27r/A is the photon wave vector, 5 is the detuning, and

so = 20R/(4b, + I 2) is the saturation parameter for a
single lattice beam. The natural linewidth of the cool-
ing transition is I /2vr = 5.2 MHz, and AR is the Rabi
frequency defined so that AR = I at an intensity of
2.2 mW/cm . The thermal excitation of each degree
of freedom is described by a Boltzmann factor fr]
exp( fico—;/k~T;), where T; is the temperature of that de-

gree of freedom. The Boltzmann factor remains constant
if the harmonic oscillator frequency is decreased adiabati-
cally, so the oscillator temperature at time 7- into the
expansion is T;(r) = T;(0)cu;(r)/cu, (0), approaching zero
for 7 ~. In our experiment the temperature does not
go to zero, because the true periodic optical potential
cannot be represented by a single harmonic oscillator.
The harmonic oscillator approximation breaks down when
the width of the c.m. distribution becomes comparable
to the spacing between optical potential wells. As we
show below, a more realistic model leads to a nonzero
prediction for the final temperature.

To satisfy adiabaticity one must have ~co~/cu = ceo,
where e « 1 for all oscillation frequencies. The func-
tional form given above of the decrease in lattice light
intensity is chosen to satisfy adiabaticity with a time in-

dependent e in the range 0.02 to 0.2. A lower limit on
e is set by the demand that heating be negligible dur-

ing expansion. By operating at 5 = —25I (halfway to
the neighboring F' = 4 hyperfine state), we achieve negli-
gible heating on the time scales used.

The initial state of a trapped atom is characterized
by oscillation frequencies which we calculate using
Eq. (1), and Boltzmann factors determined from the
observed initial momentum spreads. For conditions that
produce the lowest temperatures, we find Boltzmann
factors of fz = fz = 0.55 and fz = 0.45, correspond-
ing to rms c.m. spreads of order Q(x~) = Q(y~) = A/9
and Q(z2) = A/12, and a steady state temperature of
=1.2 ~K. Figure 2(b) shows an example of the mea-
sured 3D temperature as defined above, as well as
the prediction of the naive harmonic oscillator model,
following various expansion times 7.. Our data deviate
noticeably from the harmonic oscillator model as early as
~ = 100 p, s; by ~ = 500 p, s, the measured temperature
has clearly reached its final value, and differs from the
harmonic oscillator prediction by more than a factor of 3.

To verify that the rate of expansion is slow enough
to ensure adiabaticity, yet fast enough to avoid heating,
we have varied the rate I~ at which the lattice light
intensity is reduced. Less than a 10% change in the
final temperature is observed when Iz is varied by an
order of magnitude, from 2 X 10 to 2 X 10 s '. This
robustness supports our assumptions of adiabaticity and
negligible heating. Using a fixed rate I ~ = 8 X 10 s

we have varied the initial conditions, determined by the
initial lattice light intensity. We find that a lower final
temperature results when the initial lattice light intensity
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and temperature is decreased, until a limit is reached
where steady state laser cooling can no longer be achieved
at the initial conditions [10].

A more realistic calculation of the final temperature
expected for adiabatic expansion in a periodic potential
can be accomplished using a simple band theory. (A dif-
ferent approach was applied by Zaugg et al. [13] to the
case of two-level atoms in a 1D lattice. ) In the follow-
ing we consider both a 1D lattice and a 3D cubic lattice
of spherically symmetric wells to allow a simple exami-
nation of the inhuence of dimensionality. In our band
theory, the initial condition for adiabatic expansion is
taken to be an atom localized in a single optical poten-
tial well, and well approximated by a harmonic oscillator.
The nth excited harmonic oscillator state H„can be ex-
panded in a basis of nonlocal, tight-binding Bloch states
B„~ of band index n and quasimomentum q [14], and it
can be shown that all q within a band have the same en-
ergy and population. The total population in the nth band
is equal to the population of the nth harmonic oscilla-
tor state. The final state is a free atom, and is expanded
in a basis of Bloch states that are simply plane waves
[14]. The tight-binding and free particle band structures
are shown in Fig. 3 for a 1D lattice with spatial fre-
quency Q0. Adiabatic expansion smoothly deforms the
tight-binding bands into free particle bands. The popu-
lation of each Bloch state is conserved due to adia-
baticity, because a lattice of constant spatial frequency
Q0 conserves quasimomentum. After expansion the nth
free particle band maps onto a pair of momentum in-
tervals nfiQ0/2 ( ipse ( (n + I)A, Q0/2, corresponding to
the (n + l)th Brillouin zone (BZ), within which the mo-

mentum distribution is uniform, as shown in Fig. 3(c).
We assign a temperature by averaging p2/2m over this
momentum distribution

1 P—k, T=P dp
~QO (n +1)th Bz

Qo'i 1 + 4' + f8= &R
k j 12(1 —fbi)2

using the initial thermal populations 7r„= (1 —fs)fIi.
In a 3D extension of this model, the distribution of
population in momentum space follows in a similar
fashion from the 3D Brillouin zones. In a 3D cubic lattice
the Brillouin zones are well approximated by spherical
shells. Taking into account degeneracy of the spherical
harmonic oscillator we find

2
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Equations (2) and (3) show that the final temperature is
completely determined by Q0 and fq.

To compare Eqs. (2) and (3) to our experiment, one
must consider which lattice spatial frequency Q0 is
appropriate. An atom moving adiabatically from a 0-+

to a 0- site is transferred from mF = 4 to IF = —4
by coherent Raman coupling. For adiabatic expansion
there is thus no distinction between lattice sites, and
the symmetry becomes simple tetragonal with spatial
frequencies Q =

QY
= k~2 and Q, = 2k~2. Here we

assume a simple cubic lattice with spatial frequency
Q0 = 4k/~5 (corresponding to 9 = 127 in Fig. 1), and
assign a Boltzmann factor, averaged over the 3 degrees
of freedom, to each experimental data point. Figure 4
shows the temperature predicted using Eqs. (2) and (3), as
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FIG. 3. (a) Tight-binding band structure. (b) Free particle
band structure. (c) Final momentum distribution. Solid and
dotted lines indicate odd and even numbered bands and their
contributions to the final momentum distribution.

FIG. 4. Final temperature for adiabatic cooling as a function
of initial Boltzmann factor. The solid line is a 3D calculation
for a cubic lattice, the dashed line is a 1D calculation for a
1D lattice. In both cases the spatial frequency ls Qp = 4k/~5.
The open circles are measurements of T by time of Right. All
measurements were taken with I& = 8 && 10 ' s
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well as experimental data points for different Boltzmann
factors, corresponding to different initial lattice light
intensities. Boltzmann factors for the experimental points
are computed on the basis of the vertical (along x)
velocity distribution only, and assume equal temperature
for all degrees of freedom. We note first that there is very
little difference in the temperature predicted by the 1D
and 3D analysis, and second that both models reproduce
the minimum observed temperatures reasonably well,
given the level of approximation involved. Data points
corresponding to higher initial lattice light intensity, and
therefore larger initial Boltzmann factor, fall below the
predicted limit for adiabatic cooling. This deviation is
caused by dissipative cooling which lowers the Boltzmann
factor early in the intensity reduction. A clear signature of
this dissipative cooling is that at early times we measure
a temperature directly proportional to the intensity, as
expected for steady state cooling [7]. We also note that
some discrepancy is expected, since theory predicts a
slightly non-Boltzmann initial energy distribution [10],
and since the estimated uncertainty in the experimentally
assigned Boltzmann factors is ~5% [12]. Nevertheless,
for the lowest initial intensities, below which there is no
dissipative cooling, we find good agreement.

With a minimum temperature of 700 nK, adiabatic
cooling of Cs atoms in an optical lattice offers an im-
provement of nearly a factor of 4 over 3D optical mo-
lasses [7]. About a factor of 2 of this improvement is
due to a lower steady state temperature in the optical lat-
tice, and the rest due to adiabatic expansion. One might
suppose from Eq. (2) or (3) that a lower final temperature
can be achieved by decreasing Qo. However, if the ini-
tial potential depth and temperature are held constant, the
accompanying change in fthm leads to a nearly unchanged
final temperature. One route to lower final temperatures
is to lower the initial temperature. This may be achieved
with Raman sideband cooling [15], in a lattice detuned
so far from resonance that heating and cooling rates are
negligible. If atoms are cooled mostly into the ground
state of the optical potential, Eq. (3) implies that adia-
batic cooling in our model cubic lattice would lead to a
temperature FR/2k' = 50 nK. Thus the band theory im-

plies a new fundamental cooling limit. Even if atoms are
cooled to the ground state (i.e., T = 0 K), it is impos-
sible to release these atoms with a kinetic energy below
approximately (Qo/k)2Ftt/4 An alternate wa. y to achieve
subrecoil temperatures would be to adiabatically expand
the lattice, thereby reducing Qo. In the geometry of Fig. 1

an arbitrarily small spatial frequency in the x-y plane can
be achieved by choosing the proper angle 0. Anderson,
Gustavson, and Kasevich have recently demonstrated a
lattice configuration with Qo ( k in all directions, and
achieved adiabatic cooling of Li by reduction of the lattice
potential [16].

Optical lattices and adiabatic cooling can be used
to create a colder atomic fountain and may provide

important improvements in atom interferometers [17] and
atomic clocks [18]. Attempts to achieve high phase
space density, needed for Bose-Einstein condensation,
might similarly benefit from adiabatic cooling. This
might seem paradoxical since adiabatic expansion strictly
conserves phase space density; however, localization on a
microscopic scale represents phase space density which
is lost when atoms are released into a macroscopic
trap. This is avoided if microscopic localization is first
traded for lower momentum spread by adiabatic cooling.
Temperatures below those reported here may be achieved
at the cost of decreased density, by releasing a small cloud
of atoms into a weak macroscopic trap [19] which is
turned off after a 4 oscillation period [20].
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