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Closed Orbit Bifurcations in Continuum Stark Spectra
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We report an experimental and theoretical study of the effect of bifurcations of closed classical orbits
in continuum Stark spectra. Our findings provide a natural way to understand how the spectrum evolves
from a simple sinusoidal modulation at positive energy to a quasidiscrete spectrum below the classical
ionization limit. The experiment employs scaled-energy spectroscopy of lithium. The results provide
the first experimental confirmation of a formulation of closed-orbit theory that provides a quantitative
description of the behavior of the spectrum at a bifurcation.
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The photoionization spectrum of a single-electron atom
in an electric field F changes strikingly as the energy
decreases [1]. In the positive energy regime (above the
zero-field ionization limit), the spectrum is smooth and
displays a single periodic oscillation. Below the classical
ionization threshold (E, = —2F 'I2, atomic units), the
spectrum is quasidiscrete. These contrasting patterns
reflect complementary aspects of atomic behavior: the
former can be simply interpreted in terms of classical
dynamics, while the latter is naturally described in terms
of the system's eigenstates. As the energy decreases in
the intermediate region from E ) 0 to F;, the broad peaks
become narrow and new resonances gradually appear.
Quantum calculations are possible in this region [2],
but they offer little insight into the connections with
classical dynamics. However, the region is fertile territory
for investigating the connections between quantum and
classical descriptions. We report here the results of
theoretical and experimental investigations that provide
a detailed physical picture of how the system evolves
from one extreme to the other. The results are helpful
in understanding the connections between quantum and
classical behavior in both regular and chaotic systems.
They demonstrate the successful repair of formulas which
previously diverged at a bifurcation.

Closed-orbit theory [3,4] is a variant of periodic-orbit
theory [5] that is well suited to spectroscopy. It provides
both an intuitive picture and a quantitative description
of how the spectrum evolves based on the behavior of
classical orbits that are closed at the nucleus. In the
time domain, a quantum wave packet is emitted from the
atom and later returns, a process known as a recurrence
[6]. Each recurrence gives rise to a sinusoidal modulation
of the absorption spectrum. Gao and Delos [4] recently
examined closed orbits and recurrences for single-electron
atoms in electric fields. At high energy only one orbit
exists, accounting for the sinusoidal modulation in the
spectrum. As the energy is decreased, new orbits are

predicted to spring into existence by an orderly sequence
of bifurcations. At each bifurcation, a new frequency
component is added to the spectrum.

We studied this bifurcation process experimentally for
lithium in an electric field using scaled-energy spec-
troscopy [7]. Similar studies have been performed in dia-
magnetic hydrogen [8]. The electric field problem for
hydrogen is separable, facilitating a detailed quantitative
study of the bifurcation process and the evolution of the
spectrum. Alkali-metal atoms in an electric field are fun-
damentally different from hydrogen because they have
nonseparable Hamiltonians and display irregular motion.
However, the recurrence spectra are nearly identical for
the short-period orbits studied here [7]. Consequently, the
lithium spectra can be interpreted in terms of the classical
dynamics of hydrogen. At longer periods, the recurrence
spectra of alkali-metal atoms can differ significantly from
that of hydrogen [9].

The Hamiltonian for hydrogen in an electric field can
be rescaled using the substitutions r = F '~ r and p =
F'~ p. The scaled Hamiltonian H = F '~ H does not
explicitly depend on the field, and the classical dynamics
depends only on the scaled energy e = FF '~, not on E
and F separately.

According to closed-orbit theory, the photoabsorption
cross section is given by a smooth slowly varying
background plus an oscillatory sum of the form [4]

Df' = P P D„t, sin(nSt, F ' —4„t,), (1)
k n=i

where k runs over all of the primitive closed orbits (orbits
which are not repetitions), and n runs over repetitions of
the primitive orbits. Sk = Sk F'/ is the scaled action of
the first repetition of a closed orbit. D„k is the recurrence
amplitude of each closed orbit. It contains information
about the stability of the orbit, the initial and final angles
of the orbit, and the matrix element of the dipole operator
between the initial state and zero-energy Coulomb wave.
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4„k is an additional phase which is computed from the
Maslov index and related geometrical considerations. The
square of the recurrence amplitude D„& is the recurrence
strength. Each closed orbit contributes an oscillatory
component to the absorption spectrum. The signature of
each closed orbit is a peak in the Fourier transform of
spectra taken at constant scaled energy and recorded as a
function of F

For F. ) 0, the only closed orbit is parallel to the field
and extends from the nucleus to the classical turning
point. The spectrum contains a fundamental Fourier com-
ponent from this orbit plus harmonics from its repetitions.
The parallel orbit is unstable and none of its neighbors re-
turn to the nucleus. Consequently, the amplitude of the
harmonics decreases roughly exponentially. Just above
E = 0, many harmonics contribute, and the spectrum re-
sembles a sawtooth. The exponential decay rate increases
as e is increased [4], resulting in a single sinusoid at large
positive energy [1,10].

As the energy is lowered below F. = 0, new closed
orbits are created by bifurcations of the parallel orbit
and its repetitions [4]. Because the system is separable
in semiparabolic coordinates [u = (r + z)'~, v = (r-
z)'~ ], the bound trajectories are quasiperiodic. Periodic
orbits occur whenever the ratio of periods of u and v
motion, T„/T„ is a rational fraction m/I. Many of these
periodic orbits do not touch the nucleus. However, within
each family of periodic orbits with period ratio m/I, there
is one closed orbit.

As explained in Ref. [4], the maximum value of the
period ratio T„/T is zero at e = 0 and increases as the
scaled energy decreases. A graph of the maximum period
ratio as a function of scaled energy is shown in Fig. 1.
At a given scaled energy, closed orbits exist for every
rational period ratio between zero and the maximum. As
the scaled energy is decreased, a bifurcation produces
a new closed orbit every time the maximum ratio is a
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rational number. Short-period orbits correspond to ratios
of small integers. Some bifurcations are labeled in Fig. 1.

To illustrate the bifurcation process, pictures of orbits
near a bifurcation are shown in Fig. 2. Orbits which
are neighbors of a closed orbit (i.e. , having the same
scaled energy and beginning at the nucleus, but having
slightly different initial directions) form a cusp structure
upon returning near the nucleus. As the energy is varied,
this cusp moves along the z axis: at the bifurcation, the
tip of the cusp touches the nucleus. Therefore, near a
bifurcation, there is a family of neighbors which also
returns to the nucleus. This focusing effect causes a large
increase in the recurrence strength as the scaled energy
passes through a bifurcation.

In its original formulation, closed-orbit theory diverges
at a bifurcation [4,11]. Such divergences are familiar
in geometrical optics which predicts infinite intensity if
a plane wave is focused to a point. These theories
are corrected by accounting for diffraction. Two of the
authors (J.G. and J.D.) have modified the closed-orbit
theory to include such diffraction effects.

We summarize the features of the theory here. A de-
tailed description will be presented elsewhere. For waves
in one dimension the semiclassical formula diverges at
an ordinary classical turning point where the behavior of
the wave function changes from oscillatory to exponen-
tial. This divergence is corrected using Airy's diffraction
integral. The same also holds at a simple boundary be-
tween classically allowed and forbidden regions in more
than one dimension. In two dimensions, it is common
for such regions to come together and form a cusp, as in
Fig. 2. The associated diffraction integral is known as a
Pearcey function [12]. However, the cusp in our problem
has a special symmetry: the axis of the cusp coincides
with the direction of the electric field, so the cusp is actu-
ally three dimensional and cylindrically symmetric about
the vertical axis in Fig. 2. Such cusps are produced by
an optical lens, and they cause spherical aberration of a
point image; the diffraction function that describes them
is a Fresnel integral [13].

The cusp in our problem has yet another symmetry.
The cusp in Fig. 2 is cylindrically symmetric not only
about the vertical axis through the nucleus, but also about
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FIG. 1. The maximum period ratio T„/T, as a function of
scaled energy. At each scaled energy, all orbits with period
ratio in the shaded region are present. Bifurcations occur when
this maximum ratio passes through a rational fraction. The
short-period bifurcations studied here are indicated.

FIG. 2. Cusp structure associated with a family of (a) outgo-
ing and (b) returning orbits near a bifurcation (semiparabolic
coordinates).
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the horizontal axis through the nucleus. The formulas that
describe this cusp make use of the close connection be-
tween a hydrogen atom and a four-dimensional harmonic
oscillator. The cusp shown in Fig. 2 is a slice through a
structure that exists in a four-dimensional extension of the
(u, U) space [14].

In spite of the complexity of the cusp, the formulas
for the wave function and recurrence strengths are sim-
ple. We find that (i) the recurrence strength is small but
nonzero before the classical bifurcation because of wave
diffraction effects or tunneling into the classically forbid-
den region; (ii) as expected, the recurrence strength is fi-
nite at the bifurcation; and (iii) the recurrence strength
has its maximum after the bifurcation, just as waves are
largest slightly inside of a classically allowed boundary.

The structure of bifurcations can be studied experi-
mentally using sealed-energy spectroscopy. The lasers
and field are scanned simultaneously so as to keep
the scaled energy —and hence the classical dynamics—
constant [7,8]. Our experiment employs a lithium atomic
beam which passes through ho1es in the centers of a pair

of electric field plates. Between the field plates, one laser
excites the 25 ~ 35 two-photon transition, and a second
laser, polarized parallel to the applied field, excites con-
tinuum states which rapidly ionize. After passing through
the second field plate, ions are detected by a channel elec-
tron multiplier. The error in scanning the laser to maintain
constant scaled energy is 0.002 cm ', the fractional error
in the electric field is 0.3%, and the fractional error in the
scaled energy is 0.15%.

We performed scaled-energy spectroscopy on I = 0
states of lithium for scaled energies between e = —2.1

and e = —0.37. Recurrence spectra were obtained by
Fourier transforming the photoabsorption cross section.
A panoramic map of the recurrence spectra is shown in
Fig. 3. We observe small recurrences corresponding to
repetitions of the parallel orbit, and large recurrences near
bifurcations. The large bifurcation peaks are labeled with
the fractions I/l, used to designate the newly created
orbits. These orbits are displayed in Fig. 3.

Our experiments and theory are consistent. As the
scaled energy approaches the bifurcation from above,
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FIG. 3. The curves in the horizontal plane represent the scaled action of the parallel orbit and its repetitions as a function of scaled
energy. Locations of bifurcations are marked with small open circles. New orbits created in bifurcations have almost the same
action as the corresponding return of the parallel orbit. Measured recurrence strengths are shown in the g direction. Recurrences
are especially strong at scaled energies slightly lower than bifurcations. Orbits created by bifurcation of the parallel orbit are shown
along the bottom. The 2/4, 4/6, and 6/8 orbits are repetitions of the l/2, 2/3; and 3/4 orbits, respectively, so their shapes are
identical.



VOr UME 74, NUMBER 9 PH YS ICAL REVIEW LETTERS 27 FEBRUAR& 199~

the recurrence strength increases significantly. The un-

certainty principle allows the quantum system to "see"
the bifurcation before it occurs classica y ~

scaled energy passesd es through the bifurcation the recur-
rence strength increases rapidly, achieving its maximum
value noticeably after the bifurcation.

To test the modified closed-orbit theory near bifurca-
tions, we measured scaled-energy spectra near the 1/2 and
2/4 bifurcations in small steps of e. The results are dis-
played in Fig. 4. The stick spectra represent the computed
recurrence strengths, and the solid lines are convolutions of
the stick spectra to account for the experimental resolution
of the recurrence spectra. The dotted lines are measured
recurrence spectra. The 1/2 and 2/4 bifurcations affect
peaks 2 and 4, respectively. Their bifurcation energy is
e = —0.4. There are two orbits underneath peaks 2 and
4, but they are not distinguishable because their actions
are nearly equal. Multiple orbits are visible in the stick
spectra under peaks 3 and 5. These orbits were created by
the 1/3 and 2/5 bifurcations, respectively. Note that the
contributions of two orbits to a single recurrence peak add

coherently. For example, peak 5 at e =—= —0.45 is smaller
than the stick spectra, indicating a destructive interference.
A = —0.5, eak 5 displays constructive interference.ate = — . , pea

These results provide a clear picture of the role oof
bifurcations in the observed spectrum and detailed con-
firmation of the closed-orbit theory. They illustrate the
fundamental process by which new orbits are created as
the energy is decreased and a simple continuum spectrum
becomes complex and discrete. The bifurcation process
studied here is generic to single-electron atoms. Similar
bifurcations occur in diamagnetic hydrogen and lead to
the roliferation of recurrences that characterizes classi-
cal chaos. Consequently, this study of bifurcations illu-
minates a fundamental process that connects classica an
quantum descriptions of both regular and chaotic systems.
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FIG. 4. Recurrence strength near the 1/2 bifurcation. e =
—0.4 is the bifurcation energy. Stick spectra: th y.
line: theory smoo eh th d for comparison with experiment. Dotted
line: experiment.
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