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Are Multifragment Emission Probabilities Reducible to an Elementary Binary
Emission Probability
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Experimental intermediate-mass-fragment multiplicity distributions for the E/A = 80 and 110 MeV
Ar + ' Au reactions are shown to be binomial at all excitation energies. From these distributions, a

single binary event probability p can be extracted that has a thermal dependence. Thus, it is inferred
that multifragmentation is reducible to a combination of nearly independent emission processes. If
sequential decay is assumed, the increase of p with excitation energy implies a contraction of the time
scale that is qualitatively consistent with recent fragment-fragment correlation data.

pACS numbers: 25.70.pq

At low excitation energies, complex fragments are
emitted with low probability by a compound nucleus
mechanism [1,2]. At increasingly larger energies, the
probability of complex fragment emission increases dra-
matically, until several fragments are observed within a
single event [3—5]. The nature of this multifragmentation
process is at the center of much current attention. For
example, the time scale of fragment emission and the as-
sociated issue of sequentiality vs simultaneity are the ob-
jects of intense theoretical [3—8] and experimental [9—17]
study. Recent experimental work [18,19] has shown that
the excitation functions for the production of two, three,
four, etc. fragments give a characteristically linear Arrhe-
nius plot [20], suggesting a statistical energy dependence.

A fundamental issue, connected in part to those men-
tioned above, is that of reducibility: Can multifragmenta-
tion be reduced to a combination of (nearly) independent
emissions of fragments? More to the point, can the proba-
bility for the emission of n fragments be reduced to the
emission probability of just one fragment?

In what follows, we show evidence that the n-fragment
emission probabilities are indeed reducible to an elemen-
tary binary emission probability. Furthermore, we shall
show that the energy dependence of the extracted ele-
mentary probabilities gives a linear Arrhenius plot. Thus,
these probabilities are likely to be thermal. While re-
ducibility does not strictly imply time sequentiality, we
point out in the following the time implications associated
with a temporal reading of a reducible thermal theory.

The partial decay width I associated with a given
binary channel can be approximated by

I = Acope

where cop is a frequency characteristic of the channel
under consideration, B is the barrier associated with the
channel, and T is the temperature. For instance, in fission,

cup is the collective frequency of assault on the barrier and
B is the fission barrier.

The elementary probability p for a binary decay to
occur at any given "try" defined by the channel period
'rp = 1/top 1s

6 CcPp

The corresponding time r is given by

7 =~pe

(2)

(3)

In the case of a compound nucleus, the total decay
width is the sum of the widths of all channels, and
the lifetime is calculated accordingly. For the case
of sequential multifragmentation, only the decay width
and lifetime for binary fragment formation need be
considered, while the abundant light particle decay can
be treated as a background that may progressively modify
the temperature and possibly the barrier.

Now, we note that the elementary binary probability p
can be directly related to the experimental branching ra-
tios for binary, ternary, quaternary, etc. decay. For sim-
plicity, let us assume that the system has the opportunity
to try I times to emit an "inert" fragment with constant
probability p. The probability I'„of emitting exactly n

fragments is given by the binomial distribution

mt

n! (m —n)!
p" (1 —p) (4)

The average multiplicity and variance are then

(n) = mp and o.„=(n) (1 —p) . (5)

It should be pointed out that this is a rather special
way to build multifragment probabilities from binary
probabilities. It has been chosen a posteriori because it
happens to work extremely well. Other ways associated
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with different decay branchings (e.g. , each produced
fragment can, in turn, decay into two fragments with
probability p) yield nonbinomial distributions.

From the experimental values of (n) and o.2 one can
extract values for p and I at any excitation energy.
Alternatively, one can extract p from the ratio of any pair
of excitation functions P„(T):

1 ~ P, m —n + 1.
p ~o P~+] n+ 1
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We now proceed to examine the experimental data for
signatures of reducibility. References [21] and [22] report
values of (n) and o.2 for the reaction 36Ar + '97Au at
E/A = 80 and 110 MeV (available center-of-mass energy
of 2.4 and 3.3 GeV, respectively) as a function of the
transversal energy E, . It is defined as E, = P e; sin 0;,
where e; is the kinetic energy of each detected particle
in an event and 0; is the angle between the particle and
the beam direction. We choose the transversal energy
as our observable and assume that it is proportional to
the excitation energy E of the source [23,24], where
E, = K(Eb„~,Ap, Az-) E.

From Eq. (5), we extract the elementary probability p
and m from the mean and variance of the experimental
fragment multiplicity distributions [21,22]. At this point
we need to consider the effect of the device efficiency
e on the fold probabilities, the mean multiplicity and its
variance, and, finally, on the observed probability p, b, .
Disregarding details associated with anisotropies, multiple
hits, etc. we can estimate that the true probability p is re-
lated to the observed probability p, bs by the relationship

p, b, = ep. This observed probability p, b, should com-
bine exactly like p in the binomial expressions [Eqs. (4)—
(6)]. The geometric efficiency of the Miniball is 0.89 [25]
and represents an upper limit for the device efficiency.
The derived values of p, b, should be corrected by the de-
vice efficiency e to obtain the physical probability p.

In Fig. 1 we plot m as a function of E, for the
intermediate mass fragments (IMF: 3 ~ Z ~ 20) multi-
plicity distributions (circles), and for the total charged
particle multiplicity distributions (diamonds). In Fig. 2(a),—&/2
we plot log(1/p) vs Et for the IMF distributions (Ar-
rhenius plot). If the probability p is thermal, as given
in Eq. (2), this plot should be linear [18], since T IX ~E.
The linearity of this plot over 2 orders of magnitude is
stunning, and strongly suggests the "thermal" nature of
p. The straight lines obtained for the two bombarding
energies suggest that the simple proportionality law
between E, and E is satisfied. The difference in slopes
suggests that the proportionality constant is bombarding
energy dependent.

One can also extract p "differentially" [Eq. (6)] by
considering the ratios P„/P„+ ~

from the experimental IMF
excitation functions. For each bombarding energy, all of
the excitation functions (n ~ 4) tightly collapse onto a

straight line, as shown in Fig. 2(b), when subjected to the
above procedure.

In Fig. 3 we show a comparison between the experi-
mental excitation functions and those calculated using the
values of p obtained from the linear fits of Fig. 2 and the
associated values of m from Eq. (5). The extraordinary
quantitative agreement between the calculations and the
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FIG. 2. (a) The reciprocal of the binary decay probability
1/p or the ratio r/ro (calculated from the mean and variance

—I/2of the IMF distributions) as a function of E, . The solid
lines are linear fits to log(1/p). (b) Values of 1/p extracted
differentially using Eq. (6). The solid lines are fits to the data
shown in the upper panel and the different symbols represent
the ratios extracted with different values of n.
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FIG. 1. The extracted values of m as a function of the
transverse energy E, for the reaction '6Ar + '97Au at E/A = 80
(open symbols) and 110 MeV (solid symbols). See text.

1531



VOLUME 74, NUMBER 9 PHYSICAL REVIEW LETTERS 27 FEBRUARY 1995

1.00

3SA +187'
I I I

i
I I I I

)
I I I I

j
I I I I

[
I I I I

0.20

O. 10
C4

0.05

0.02

1.00 I I I I ~ I I I I' I I I I I I I I I I I I I I

0.50

0.20

0, 10
P

0.05

0.01
0 200 400 600

EI (MeV)

E/A=BOMeV
n=

\It 0
0 1
~ p

o 3
e 4
G 5
+ e
2( v

I I I

BOO 1000
I I

1200

FIG. 3. The experimental (symbols) and the calculated (solid
lines) probability to emit n IMFs as a function of F, For
numbers of fragments n = 0—8, P(n) is calculated assuming a
binomial distribution [see Eq. (4)] with the values of p obtained
from the linear fits shown in Fig. 2 and the corresponding
values of m from Eq. (5).

exp( —Bo/T) exp( —ax'/T) dx (7)

(T/a)' ' exp( —Bo/T) .

Thus the simple form of Eq. (2) is retained with a small
and renormalizable preexponential modification.

One possible interpretation of the reducibility discussed
above is sequential decay with constant probability p.
Assuming that the (small) fragments, once produced
do not generate additional fragments or disappear, the
binomial distribution follows directly. In this framework,
it is possible to translate the probability p into the mean
time separation between fragments. In other words, we
can relate the n-fragment emission probabilities to the

experimental data confirms the binomiality of the multi-
fragmentation process. Preliminary analysis of additional
experiments [26] with different target-projectile combina-
tions and bombarding energies indicates the general appli-
cability af this description.

The more directly interpretable physical parameter con-
tained in this analysis is the binary barrier B (proportional
to the slope of the data in Fig. 2). One may wonder why
a single binary barrier suffices, since mass asymmetries
with many different barriers may be present. Let us con-
sider a barrier distribution as a function of mass asymme-
try x of' the farm 8 = Bo + ax', where Bo is the lowest
barrier in the range considered. Then,

p = I /6tdo

mean time separations between fragments. The validity
of this interpretation is testable by experiment.

Equation (3) shows that the decay probability and the
associated decay lifetime are dramatically affected even
by moderate changes in temperature. Furthermore, as
the temperature becomes comparable with the barrier, the
binary decay probability approaches unity and the lifetime
approaches the characteristic (dynamical) time constant of
the channel, v.o. This behavior is indeed shown by the
extracted times (7 = ro/p), shown in Fig. 2.

To measure the mean time separation between
fragments, groups have utilized the pairwise fragment-
fragment correlations introduced by their mutual Coulomb
interaction [9—17]. The results suggest rather short upper
limits (7 ~ 100 fm/c) for the decay time scales for cen-
tral collisions (large values of E,) Arec. ent experiment
[15] has studied the "proximity" effect of the surviv-
ing partner, produced in a deep inelasticlike collision,
on the angular distribution of the fragments resulting
from the breakup of the other partner. This remarkable
experiment shows that at small excitation energies, the
proximity effects are essentially absent, but become
very pronounced at large excitation energies. This onset
of proximity effects was taken to signify a transition
from slow sequential multifragmentation to fast, nearly
simultaneous multifragmentation. However, the observed
decrease of the decay lifetime with increasing excitation
energy [11,12,14,15] is also consistent with the expected
energy dependence of sequential decay, and by itself does
not prove a change in mechanism.

The detailed accuracy and the broad applicability of
the binomial distribution are somewhat disconcerting. For
instance, what is the significance of the parameter m? In
the sequential description the system is given m chances
to emit a fragment, with fixed probability p, after which
the emission is shut off. One might have guessed that the
probability p would decrease progressively as a function
of time due to evaporative cooling, and that m is just
an approximate cutoff inade necessary by the constant p
in the binomial distribution. This hypothesis, however,
may not be correct. A simple evaporation calculation
shows that during the time r = mro (6cuo =— 1 MeV)
the system has insufficient time to cool completely.
Therefore p may be nearly constant, and one is led
to attribute a more physical significance to m. What
switches the emission off after m tries must remain a
speculation here. Let us venture to say that dynamics
may be responsible for such an effect. Could it be that
the fragments are statistically emitted while the system
undergoes an expansion phase [27—30] only to be shut off
as it reverts to normal density' If it were so, this would
be a significant dynamical feature in an otherwise rather
thermal picture.

To see if the light charged particles give any evidence
for a longer cooling time, we performed the same analysis
on the total charged particles emitted in these reactions.
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From the means and variances, one obtains values of
m almost 4 times larger than those obtained for the
fragments (see Fig. I). In our picture, this could be a
reflection of a longer total emission time and/or a shorter
intrinsic period ro for light charged particle emission.

We have tried to find alternative explanations to the
sequential description for the binomial distributions with
thermal probabilities. An obvious model is a chain of
m links with probability p that any of the links is broken.
The probability that n links are broken is given by Eq. (4).
This result is, of course, strictly dependent on the dimen-
sionality of the model, and its relevance to multifrag-
mentation is unclear. Nevertheless, it stresses again the
fundamental reducibility of the multifragmentation proba-
bility to a binary breakup probability p.

The final proof for or against sequentiality must rest on
independent time measurements. The establishment of an
agreement between the times inferred from the emission
probabilities and from the particle-particle correlations
would go a long way toward resolving this issue.

In summary, (I) the multifragment emission probability
has been found to be binomial and reducible to an
elementary binary probability. Thus, multifragmentation
is empirically reducible to single fragment emission. (2)
This binary elementary probability is observed to have a
thermal energy dependence under the assumption that the
excitation energy is proportional to the transversal energy.

Under the assumption of sequentiality, the inferred
emission time scale contracts rapidly with increasing
excitation energy. Such a contraction could explain the
observed rapid onset of the fragment-fragment Coulomb
interaction with increasing excitation energy and would
obviate the need for "simultaneous" multifragmentation
as a distinct process. While for very short time scales the
distinction between sequential and simultaneous emission
may become blurred, the retention of reducibility still
conveys a very interesting message regarding the structure
of the multifragmentation event.
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