
VOLUME 74, NUMBER 9 PHYSICAL REVIEW LETTERS 27 FEBRUARY 1995

Missing and Quenched Gamow-Teller Strength
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Gamow-Teller strength functions in the resonance region are calculated in the full (pf)' space. The
observed profile is very sensitive to the level density and may become so diluted as to be confused
with background. A model independent proof is given that standard quenching originates in nuclear
correlations, and that some 30% of the total strength must be due to states outside the (pf)' space. By
combining this argument with the results of shell model calculations, comparison with the 4"Ca(p, n)4'Sc
experimental data strongly suggest that most of the strength that is currently thought to be missing is
actually observed.

PACS numbers: 21.10.Pc, 25.40.Kv, 27.40.+z

Since the time of the pioneering (p, n) [1,2] and (n, p)
[3,4] experiments, it has been possible to explore the
Gamow-Teller strength function of many nuclei in the
resonance region and beyond. The most striking result
is that a large fraction of the theoretically expected
sum rules for a7. operators, S+ and S, seems to be
missing. The precise amount may be difficult to assess
because of calibration and background problems [5,6],
but a reduction by a factor of 0.6 of S+ and S
is currently accepted as standard [7]. This number is
obtained through two different channels. One is the sum
rule S —S+ = 3(N —Z), which is model independent.
Therefore the strength difference cannot be quenched,
i.e., suppressed. It is missing, but it must be somewhere
[8]. The other indication comes from the well defined,
isolated peaks seen in P decays, which are about a factor
of 0.6 weaker than predicted by the most accurate shell
model calculations available [9,10]. Here we can speak of
quenching because the data demand it, in the same sense
they demand effective charges, though the mechanisms at
play are very different in the two cases. Throughout this
Letter we shall distinguish the missing factor, taken to be
unity if no strength is missing, from the quenching factor
set at the standard 0.6 value.

Below we calculate exactly the strength function for
the reaction 4sCa(p, n)4sSc, and show the infiuence of
the density of levels on the observed profile. Then we
decompose the model independent sum rule in a way
that makes it apparent that quenching is a norm effect
that originates in deep nuclear correlations. Finally, we
compare with the experimental results of Anderson et
al. [11] and explain why most of the strength that is
thought to be missing is in fact observed.

Model strength functions To understan. d —how the
strength distributes among daughter states we rely on a
method proposed by Whitehead [12] and is now quite
popular [13—15]. We work in the full pf shell with
the KB3 interaction [10,16,17] and obtain the exact tar-
get eigenstate ~k) in this model space. Following [12]
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FIG. 1. ""Ca(p, n) sSc GT % strength, I = 50 and 700.

we define states Is ) = err ~k), whose norms are the
sum rules S, and we use them as "pivots" (i.e., start-
ing states) to construct a Lanczos tridiagonal matrix in
which each new state is obtained by acting on the pre-
ceding one with the Hamiltonian. After I iterations we
obtain I eigensolutions, and the amplitude of the pivot
in each of them determines its contribution to a strength
function whose first 2I moments are those of the exact
distribution. To guard against numerical errors, each new
Lanczos vector must be spin and isospin projected, and
orthogonalized to the preceding ones. We are mostly in-
terested in the 8590 J = 1, T = 3 states of 4~Sc, embed-
ded in a total of 1.4 X 10~ I-scheme partners. An IBM-
3090 (now retired), ANTQINE [18], could cope with about
100 iterations per hour for this problem. In Fig. 1 we
show the 4sCa(p, n)4sSc, Gamow-Teller (GT) strength af-
ter I = 50 and 700, ~k) is the (pf) T = 4 ground state,
and the pivot is projected to keep only the T = 3 states.
At I = 50 only the lowest four spikes correspond to con-
verged eigenstates. The others should be viewed as door-
ways that will split as we evolve. At I = 700, all spikes
below 10.5 MeV are eigenstates. Therefore, although the
strength functions for I = 50 and 700 look very different,
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their first 100 moments are identical. One would sus-
pect that this enormous constraint would guarantee iden-
tical distributions for practical purposes, but this is not
quite the case as can be gathered from Fig. 2 in which we
have associated to each of the states at I = 700 a Gauss-
ian width of 150 keV, to simulate the experimental situa-
tion. The corresponding strength function is what would
be seen in an ideal experiment perfectly described by the
calculation. To make the I = 50 peaks agree approxi-
mately with this profile, it is necessary to smooth them by
Gaussians of 250 keV above 6 MeV. Two comments are
called for.

(i) Dilution —Th. e 250 keV width depends on the
density of levels, i e., it corresponds to information
brought in by the very high moments of the distribution.
In situations of high level density the "dilution' may be so
severe as to leave few traces of individual peaks. To give
an example, in Fig. 1 only 32% of the strength is found
in peaks with individual shares of less than 1%. For the
J = 3, 4, 5, T = 0, 1 daughter states of the 4sMn(GT)4sCr
process [19,20] the corresponding number is 82%.

(ii) Shifting —The . smoothed I = 50 peaks give a fair
account of the exact situation but significant discrepancies
show for the three peaks above 10 MeV that are out of
phase.

The origin of quenching —To un.derstand the origin of
the quenching effect we must first say a few words about
the meaning of a shell model calculation. The basic idea
(for abundant details and examples see [17,21]) is that the
full space is divided into model (Ii)) and external (Ij))
states —also called intruders —that are then "dressed, "
i.e., correlated through the transformation

Ii& = Ii&+ g&, lj&,
J

Ij& = Ij&
—p~„li&,

which respects strict orthogonality, (ilj) = 0. The ampli-
tudes A;, are obtained by demanding

(ilHlj) = o. (2)

err+ o r —or. o r+. = 3(n —z), (3)

where n and z are number operators for neutrons and
protons, and the dots indicate that we keep the scalar
term in spin space. Now let us separate the orbits into
model, m (in our case the pf shell), and external ones, r.
Please do not confuse orbits with states: Ij) in Eq. (1) is
an external state made of configurations that contain bothI and r orbits.

The 0-~ operator can be written as a sum of the model
contribution plus the others

or= (o.r )-+ (or)„, - (4)

then Eq. (3) splits in two, and we find immediately

S —S+ = (S —S+) + (S —S+)„
= 3(&ln —z I&) + 3(&ln, —z, lit&, (5)

In practice this condition is treated in perturbation theory
and, as a consequence, only the low lying states of
the shell model diagonalization approximate well exact
eigenstates of the system. The others, which are close
in energy to the external ones, will have a status of
doorvvays.

The calculation of the effective operator (or),tt i.n the
model space is more difficult than for the Hamilton-
ian, because we have to know the norms of the dressed
states. Fortunately, there is a simple and rigorous argu-
ment that makes plausible the empirical result (o.r),ff
Q0.6(o.r) .

We start by noting that the 3(N —Z) sum rule is a
consequence of the equality
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where IK& is the exact target eigenstate, i.e., a normalized
sum of Ii) states. The number operators are such that
n + n„= n = N, g + g, = g = Z, but their expecta-
tion values are nontrivial because they are a measure of
the correlations: Instead of being either filled or empty,
orbits are partially full or partially empty. The hole occu-
pancy, i.e., the filling factor immediately below the Fermi
surface, can be extracted from transfer reactions or (e, e')
scattering. The (d, p) results of Void et al. [22] yield a
value of 0.70(5) for oCa, against 0.75(5) from the anal-
ysis of (e, e') experiments in ~osPb [23—25], indicating a
remarkable constancy for this fundamental quantity.
Therefore, since we can equate terms separately in
Eq. (5), we shall write

FIG. 2. Gauss700 (full line): 7001 in Fig. I, smoothed by
Gaussians of 150 keV width. Gauss50 (shaded area): SOI in
Fig. 1, smoothed by Gaussians of 150 keV width below 6 MeV
and 250 keV width above 6 MeV.

(s- —s+) = 3 (kin —z Ik)0.70(5)
= 3(N —z)0.7o(5),
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FIG. 3. 'Ca(p, n) (full line): experimental GT strength from
Ref. [11];fine (dashed line): same as Gauss700 in Fig. 2; gross
(shaded area): same as fine and Gauss700 up to 8 MeV, then
700I in Fig. 1 smoothed by Gaussians of 500 keV width. An
area of 100 in the figure corresponds to 13.6 GT units (see
text).

where ~k) is the model (undressed) target eigenstate.
Equation (6) can be read directly as meaning that some
70% of the strength is in the model space —assumed to
be a full major shell —and some 30% outside. This in-
terpretation is basically correct, but there is a subtle catch.
When we act with (or) . on the exact ground state, there
is no reason to suppose that the result is exactly a dressed
model state: It may contain some external contribution.
Therefore the strictly model strength, i.e., the one we have
calculated, may not be 70% of the total, but somewhat
less, and we propose to replace Eq. (6) by

(S —S+) i—:3(N —Z)0.70n, (7)

where n ~ 1, and m' stands for calculated model strength.
Obviously if a = 6/7, we would recover the standard
quenching factor $0.6. Although a rigorous estimate
would be hard, an experimental check is possible. What
we would expect is an excess of 7/6 of the measured
strength over the calculated one in the region where the
latter is strong.

It should be stressed that we have by no means
demonstrated that the effective operator is (o.r), fr =
$0.6 (o.r), but we have certainly shown that the strength
we have calculated accounts for at most 70% of the total.

Comparison ~ith experiment. —In Fig. 3 the
sCa(p, n)4sSc data have been scanned from Fig. 5

of Ref. [11]. The isobaric analog state at 6.7 MeV
and the J = 1, T = 4 state at 16.8 MeV have been
substracted: The former through a Gaussian of 200 keV
width, the latter by continuing the background line. The
T = 3 strength calculated with the effective operator
$0.6 err is 22.7 X 0.6 = 13.6 GT units, and corresponds
to an area of 100 in the figure. (The subtracted T = 4
contribution is 1.3 X 0.6 = 0.78 GT units. ) The ex-
perimental area is 180, i.e., 24.5 GT units. Before we

examine what the figure is telling us in the light of the
analysis in the preceding discussion, we would like to
explain the possible origin of the idea that much strength
is missing.

In the absence of any extra information, the experi-
mental profile of Fig. 3 suggests that the tail above
15 MeV is background. Then in good logic it has to
be extrapolated back under the resonance and subtracted,
leading to a "missing" factor of 0.43 [11]. Osterfeld [26]
argued that this "experimentalist's background" should
be restored. Then, missing and quenching factors be-
come about equal, and the standard picture emerges.
However, it is clear from the figure that the tail cannot
start abruptly at 15 MeV: It must originate somewhere
between 5 and 10 MeV.

If now we turn to the calculations, we can understand
quite clearly what is happening: Below 8 MeV, with the
instrumental Gaussian smoothing of 150 keV (the "fine"
curve in Fig. 3), they agree with the data perfectly. Above
that energy, Gaussians of 500 keV are necessary (the
"gross" shaded area), a clear indication that intruders are
coming in, causing shifting and dilution of the model
strength. The situation is similar to that of Fig. 2, but
in the absence of constraints on the moments the effects
are stronger. It is worth noting that we obtain as a fringe
benefit a good estimate of the level density up to 8 MeV
by direct counting in Fig. 1.

The interpretation is transparent: The experimental
distribution is bimodal, the main group being mostly
model strength and the bump above 15 MeV due to in-
truders, but, as we have just shown, the bump originates
at around 8 MeV. Therefore the experimentalist's back-
ground is indeed present, although it is genuine strength
rather than background.

The intruders also carry some strength of their own be-
low 15 MeV, where the calculated area is 97 and the ex-
perimental one 111. Therefore we find n = 97/111 =
0.87 = 6/7, the ratio needed to explain standard quench-
ing, as discussed after Eq. (7).

From Eq. (6), we can estimate the area beyond
15 MeV: (0.3/0. 7)111 = 47.5. Therefore out of a total of
180, some 158.5 should be interpreted as genuine strength
corresponding to 21.6 GT units, i.e., 95Vo of the T = 3
contribution to the 3(N —Z) bound.

The uncertainties in the numbers we have chosen are
large enough to allow for estimates that will exceed the
(lower) bound, especially if we remember that strength
at higher energies may exist. It is difficult to escape the
conclusion that most of the strength that was thought to
be missing is actually observed and due to intruders.
This possibility is not ruled out in the analysis of the data
in [11].

The calculation for Zr by Bertsch and Hamamoto
[27], which indicated that much strength is above the
GT resonance, is basically consistent with our results, the
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main difference being in the location of intruder strength,
which we expect at lower energies.

It seems quite evident that the missing factor should be
much closer to 1 than hitherto suspected: In the absence
of further experimental evidence the observed profile
above 15 MeV in Fig. 3 must be assumed to contain
mostly genuine GT strength. As S+ has the same origin as
intruder strength, results on the sCa(n, p) reaction would
be welcome.

To sum up, Eq. (6) is a model independent result
assigning some 70% of the GT strength to the resonance
region, and 30% outside of it and due to intruders.
State of the art shell model calculations give perfect
agreement with the observed profile up to 8 MeV, and
then unmistakable signs of a rapid increase of the density
of intruder states. The observed tail of the resonance is
naturally interpreted as containing the bulk of the strength
hitherto thought to be missing. Therefore the (p, n)
reaction probably tells us little about isobars in nuclei—
which was taken to be its main interest. As compensation
it may become a tool to measure a fundamental quantity,
the level density.

The authors are grateful to S. Koonin, B. Mottelson,
and S. Pieper for extremely important comments, and
to Laure Waha for her contribution to the final form of
the manuscript. This work has been partly supported
by the IN2P3(France)-CICYT(Spain) agreements and by
DGICYT(Spain), Grant No. PB93-263.

[1] C. D. Goodman, Nucl. Phys. A374, 241c (1982); C. D.
Goodman et al. , Phys. Rev. Lett. 44, 1755 (1980).

[2] C. Gaarde et al. , Nucl. Phys. A334, 248 (1980).
[3] M. C. Vetterly et al. , Phys. Rev. Lett. 59, 439 (1987);

Phys. Rev. C 40, 559 (1989).

[41

[5]
[6]
[7]

[9]

[10]

[11]
[12]

[13]

[14]

[16]

[17]

[19]
[20]

[22]
[23]
[24]

[25]

[26]
[27]

R. Madey et al. , Phys. Rev. C 35, 2011 (1987); 36, 1647
(1987).
E.G. Adelberger et al. , Phys. Rev. Lett. 67, 3658 (1991).
M. B. Aufderheide et al. , Phys. Rev. C 46, 2252 (1992).
F. Osterfeld, Rev. Mod. Phys. 64, 491 (1992).
C. D. Goodman, J. Rapaport, and S.D. Bloom, Phys. Rev.
C 42, 1150 (1990).
B.A. Brown and B.H. Wildenthal, At. Data Nucl. Data
Tables 33, 347 (1985).
E. Caurier, A. P. Zuker, A. Poves, and G. Martinez-
Pinedo, Phys. Rev. C 50, 225 (1994).
B.D. Anderson et al. , Phys. Rev. C 31, 1161 (1985).
R. R. Whitehead, in Moment Methods in Many Fermion
Systems, edited by B.J. Dalton, S.M. Grimes, J.D. Vary,
and S. A. Williams (Plenum, New York, 1980), p. 235.
S.D. Bloom and G. M. Fuller, Nucl. Phys. A440, 511
(1985).
J. Engel, W. C. Haxton, and P. Vogel, Phys. Rev. C 46,
2153 (1992).
E. Caurier, A. Poves, and A. P. Zuker, Phys. Lett. B 252,
13 (1990).
T. T. S. Kuo and G. E. Brown, Nucl. Phys. A114, 241
(1968).
A. Poves and A. P. Zuker, Phys. Rep. 70, 235 (1981).
E. Caurier, computer code ANTOINE, Strasbourg, 1989.
T. Sekine et al. , Nucl. Phys. A467, 93 (1987).
J. Szeripo et al. , Nucl. Phys. A528, 203 (1991).
A. Poves and A. P. Zuker, Phys. Rep. 71, 141 (1981).
P. B. Void et al. , Nucl. Phys. A302, 12 (1978).
J. M. Cavedon et al. , Phys. Rev. Lett. 49, 978 (1982).
V. R. Pandharipande, C. N. Papanicolas, and J. Wambach,
Phys. Rev. Lett. 53, 1133 (1984).
O. Benhar, V. R. Pandharipande, and S.C. Pieper, Rev.
Mod. Phys. 65, 817 (1993).
F. Osterfeld, Phys. Rev. C 26, 762 (1982).
G. F. Bertsch and I. Hamamoto, Phys. Rev. C 26, 1323
(1982).

1520


