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Optical Thermal Ratchet
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We present an optical realization of a thermal ratchet. Directed motion of Brownian particles in
water is induced by modulating in time a spatially periodic but asymmetric optical potential. The net
drift shows a maximum as a function of the modulation period. The experimental results agree with a
simple theoretical model based on diffusion.

PACS numbers: 05.40.+j

Let us consider a Brownian particle diffusing in a
one-dimensional periodic well-shaped potential. If the
potential height is much larger than the thermal noise,
the particle is localized in a minimum. Suppose that this
potential is asymmetric and characterized by two length
scales Af and Ab (forward and backward) and assume
that Ab is larger than Af (time r = 0 in Fig. 1). In
an equilibrium situation, not net motion of particles can
be induced by a periodic potential, since there is no
large scale gradients. However, a time modulation of
such a potential, when asymmetric, can induce motion
in the following way: Turn the potential off; the particle
diffuses freely (time r ~ r,« in Fig. 1). We call Pf the
probability that the particle diffuses forward by more than

Af during the time r„«(and similarly Pb for the backward
probability). Switching the potential on again after a
time ~,ff forces the particle to the forward well with a
probability Pf and to the backward one with a probability
Pq (time r = r, ff in Fig. 1). We define as J = Pf —Pb,
the probability current for a particle to advance one step in
the periodic potential. Because Ab is larger than Af, Pb is
smaller than Pf and the drift is nonzero. As proposed
earlier, the time modulation of a periodic asymmetric
potential creates directed motion of thermally fluctuating
particles [1]. Similar models of engines that extract work
from random noise have been recently proposed under the
denomination of "thermal ratchets" [2—6]. These models
may have some connection with biological motor proteins
[7—14].

How does one experimentally realize such a spatially
periodic but asymmetric forcing of Brownian particles?
One way is to deposit two metallic films on a glass
substrate in a periodic but asymmetric fashion, so that
applying an ac electric field through these electrodes
creates the desired potential for colloidal particles in
an aqueous solution. Recent experiments using such
a setup confirmed the induced drift [15,16]. However,
hydrodynamic interactions and the complicated electrical
response of charges in water limited these experiments to
only qualitative agreement with theory.

In this Letter, to avoid hydrodynamic interactions we
study only one particle (a 1.5 p, m diameter polystyrene
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FIG. 1. The asymmetric potential is drawn as the thick
line. The forward and backward length scales defining the
asymmetry are Af and Ab. The particle probability densities are
drawn as thin lines. At time 7- = 0, the particle is localized and
the probability density is sharply peaked. For times 7. ~ ~,«,
the potential is off and the particle diffuses freely. At time
T 7 ff the potential is back on and the particle is forced
to the forward and backward minimum with probabilities Pf
and Pb.

sphere in room temperature water). To avoid electrolytic
effects, the potential is created optically by strongly
focusing an infrared laser beam to form an optical
tweezer [17,18]. Two oscillating mirrors move the optical
trap along a circle at a frequency too high for the
particle to feel any net azimuthal force. The radial force,
however, does not average to zero, and the particle is
confined to diffuse along the circle. We then produce a
periodic, asymmetric spatial modulation of the tweezing
strength along the circle by synchronizing the rotation
of a neutral density filter wheel with the rotation of the
optical tweezer. Modulating in time this spatial intensity
profile induces a net drift of the Brownian particle.
The experiment is in agreement with the theory. We
also observe a maximum of the induced motion as a
function of the modulation time, related to stochastic
resonance [19,20] (see Ref. [21] for an experimental case
of resonance using a setup similar to ours). We then
discuss the feasibility of particle separation using thermal
ratchets.
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Let us first describe the experimental setup. The
samples are prepared by diluting suspensions of 1.5 p, m
diameter polystyrene spheres in pure water to a volume
fraction of 10 4, so that typically only a few beads are
seen in the microscope field of view (50 X 50 p, m2).
Mylar sheets of 50 p, m thickness are cut and used as
spacers between a microscope slide and a coverslip
previously cleaned and dried using a nitrogen gas ionizing
gun. The cells are then filled with the spheres in

suspension and sealed with fast epoxy. The sample,
placed on the translation stage of an upright microscope,
is observed under bright-field illumination.

The TEM00 linearly polarized output of a 1 W power
Nd: YAG laser (wavelength = 1064 nm) is inserted into
the microscope's optical path via the beam splitter 8 (see
Fig. 2). Strongly focused by a lOOX oil coupled objective
(OBJ), the beam converges inside the sample to a sharp
focal point that acts as an optical trap for the polystyrene
sphere. Because of optical losses, the laser power at the
sample level is of order 30 mW, and the trapping force is
of order a piconewton. Two mirrors M1 and M2 mounted
on galvanometers oscillate around two perpendicular axes
with a vr/2 phase difference. Two telescopes Tl and
T2 allow the beam to pivot about the center of the iris

diaphragm of the microscope objective as the mirrors
oscillate (thus preserving the Gaussian beam profile) [22j.
This setup moves the optical trap along a 7 p, m diameter
circle. A quarter wave plate A/4 transforms the linear
beam polarization into a circular one: This is necessary
to keep the beam intensity constant along the circle. The
two galvanometers are synchronously driven at 100 Hz.
This frequency is such that the optical tweezer moves
too fast for the sphere to follow the trap; the azimuthal
force on the particle averages out to zero. The sphere
diffuses then freely along the circle but is still confined in
the radial direction. We checked experimentally that the
bead moves diffusively along the circle. We also checked
that the trap intensity is constant to within a few percent.

We now spatially modulate the beam intensity along the
circle in a periodic but asymmetric way. A neutral density
filter wheel is mounted on a chopper, the rotation speed
of which is synchronized with the rotation of the optical
trap (Fig. 2). The shape of the transmission coefficient
of the wheel as a function of the rotation angle 0 is an
asymmetric triangle repeated 4 times as 0 goes from 0 to
2~. The maximum attenuation factor is 10 . Figure 3
shows the hearn intensity profile along the circle described
by the optical trap. Note that the particle is not trapped
and does not rotate at 100 Hz; the spatial modulation
localizes, however, the particle in the regions of maximum
intensity (see Fig. 3, modulation on). The shape of the
effective potential experienced by the sphere along the
circle is then indeed an asymmetric triangle characterized
by the two length scales Ay and A& shown in Fig. 1.
The smaller length scale A~ is limited by both the laser
wavelength and the particle diameter; A~ is around 2 p, m.
Experimentally, it takes a few seconds for the particle to
fall to the bottom of the potential. Once there, it stays
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FIG. 2. The sample is observed under bright-field microscopy.
The beam splitter B adds the infrared laser beam to the
microscope' s optical path. The microscope objective OBJ
focuses the beam to a focal point, defining an optical trap.
Two mirrors M1 and M2 oscillate around two perpendicular
axes with a vr/2 phase difference. They move the trap along a
circle (see Fig. 3). Two telescopes T l and T2 pivot the beam at
the iris diaphragm of the objective OBJ. Circular polarization
of the beam is achieved using a quarter wave plate (A/4). The
filter wheel is mounted on a chopper (C) synchronized with the
mirrors. The chopper itself is put on a translation stage which
is pulled in and out of the laser path.

Modulation
off:

Diffusion

FIG. 3. Modulation on: the spatially asymmetric modulation
of the beam intensity along the circle described by the optical
trap is shown as the thin solid line (4 modulations per optical
trap cycle). The 1.5 p, m diameter particle is shown localized
in a region of maximum beam intensity. Modulation off: the
beam intensity is constant along the circle. The particle diffuses
freely in one dimension.
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localized: The height of the potential is much larger than
the thermal noise k~T.

We now modulate the beam intensity in time. The
chopper is mounted on a translation stage. We manually
pull the chopper in and out of the laser path in order
to switch on and off the asymmetric spatial modulation
of the potential along the circle. When on, the particle
gets azimuthally localized in a potential minimum (time
r = 0 in Fig. 1, modulation on in Fig. 3). When off, the
particle is still confined on the circle but now diffuses
freely along it (time r ~ r,« in Fig. 1, modulation off in

Fig. 3). Turning the spatial asymmetry on again after a
time r, ff localizes the particle to the minimum where the
local gradient of light leads to (time r = r, ff in Fig. 1,
modulation on in Fig. 3). The experimental time scales
are small enough that the particle does not diffuse by more
than the spatial extent of one well. The uncertainty in ~,ff
is of order 1 s. We repeat this experiment N times (N is
of order 80) for different r, ff and count the total number
of forward (Nf) and backward (Nb) bead motions. The
forward probability is Pf = Nf/N and the backward one
Pb = Nb/N. In Fig. 4, the measured probabilities Pf and
Pb are plotted as a function of ~,«. The vertical error bars
on Pf (Pb) represent the statistical uncertainty QNf/N
(/Nb/N). As expected for small r, ff, the particle does
not have enough time to diffuse to the next minimum
and stays in the same well; both probabilities tend to
zero. For large ~,fq the particle diffuses to the forward
or backward minimum with equal probability 1/2. (This
assumes that the particle does not diffuse by more than
the spatial extension of one well, which is the case for the
range of experimental time scales, it is a short time scale
approximation. ) The forward probability Pf is then given
by [23]

=1 Af 1 rf
Pf = —Erfc = —Erfc

2 j4D70ff 2 2roff

where Erfc is the complement of the error function and

7f the average time for the particle to diffuse a distance

Af rf Af /2D. D is the diffusion coefficient of a

1.5 p, m diameter sphere in water at room temperature
(D = 0.3 ~m /s). This estimate agrees with the value we
find by observing the bead diffusion along the circle when
the modulation is switched off. We approximate Eq. (1)
by [16,23]

1
Pf = —exp( —rf/7 ff).

2
(2a)
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In a similar way the backward probability is approximated
by

1
Pb = —eXp( rb/r —ff), (2b)

where the characteristic time ~b is equal to rb = Ab/2D.
The solid lines in Fig. 4 are fitted to the experimen-
tal points using the simple exponentials (2a) and (2b).
The results are 7.f = 5.3 ~ 0.3 s and rb = 12.8 ~ 0.5 s.
From these times we estimate the two length scales,
Af = 1.8 ~ 0.2 p, m and Ab = 2.8 ~ 0.2 p, m. The for-
ward characteristic length scale Af is close to the bead
diameter as expected. These estimates agree with direct
observation of the fall of a particle into the potential well.

The net drift (Pf —Pb) is shown in Fig. 5 as a
function of 7. ff. The vertical error bars represent the
statistical uncertainty QNf + Nb/N. The observed drift
increases sharply from zero as r, &f approaches rf (of
order 5 s), reaches a maximum for a time r,„=(rb-
7 f)/ In[rb/'rf ] of order 8 s, and then decreases slowly
back to zero as r, ff becomes larger than rb (13 s). The
solid line in Fig. 5 is the difference of the two fits in

Fig. 4. The value of the drift at resonance is quite small
(0.15). It could reach as much as 0.5 in the limit of large
(rblrf)

A particle with a different diffusion coefficient will
show a similar curve with different characteristic time
scales. This could be used in principle to sort particles
according to their sizes [24]. This is, however, rather
unpractical in this experiment. The first limitation comes
from the broad width of the resonance (Fig. 5). Making
it sharper by reducing the difference between ~f and
~b will decrease the strength of the resonance. There
are no values of 7.f and ~b that maximize the quality
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FIG. 4. The probabilities Pf and Pb for a particle to move
forward (triangles) and backward (circles) as a function of r, ff.
The two solid lines are fitted to the data following Eqs. (2a)
and (2b).

FIG. 5. The probability current (Pf —Pb) as a function of
7 fj. The solid line is the difference between the two fits from
Fig. 4.
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factor (height over width) of the resonant curve. Another
limitation comes from the statistical character of the
induced drift: It is only on average that the particle
motion follows the drift. The on and off switching of the
potential then has to be repeated a large enough number
of times so that a net particle motion emerges from the
diffusive noise.

In conclusion, we have experimentally demonstrated the
principle of a thermal ratchet: Broken spatial symmetry
and time modulation are indeed enough to induce directed
motion from random noise, with a maximum for a char-
acteristic modulation time. Thermal noise can be a tool
rather than a physical limit to the efficiency of motors [25].
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