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An analog of Kolmogorov's superconvergent perturbation theory in classical mechanics is constructed
for self-adjoint operators. It is different from the usual Rayleigh-Schrodinger perturbation theory and

yields expansions for eigenvalues and eigenvectors in terms of functions of the perturbation parameter.

PACS numbers: 03.65.—w, 02.30.Mv, 02.90.+p, 31.15.+q

About a century ago Lindstedt [1], Poincare [2], and
von Zeipel [3] developed a perturbation theory for Hamil-
tonian systems in classical mechanics (CM). The method
was mainly used in celestial mechanics but in most cases
failed to converge due to the appearance of small divisors.
It was only in the fifties that Kolmogorov [4] proposed
a new quadratically convergent perturbation method for
Hamiltonian systems in CM and this (nowadays called su-

perconvergent) method was essential in Arnold's proof of
the Kolmogorov-Arnold-Moser theorem [5].

In this Letter an exact analog of Kolmogorov's super-
convergent method is constructed for self-adjoint opera-
tors. So far "superconvergent" is only a name for this new
method and a detailed functional analytic investigation
will have to determine how much the new perturbation
theory constructed here is an improvement on existing
schemes. There are, however, indications that this will be
so. The first comes from the fact that we have also con-
structed an analog of the Poincare —von Zeipel perturba-
tion theory for self-adjoint operators and have shown that
this analog is identical to the usual Rayleigh-Schrodinger
perturbation theory [6]. Since in CM the superconver-
gent method is a vast improvement on the Poincare-
von Zeipel method, we may expect the same in quantum
mechanics (QM). The second comes from initial nu-

merical studies.
(a) General algorithm of the superconvergent

method. —Let Ho be the unperturbed Hamiltonian
(CM, function on phase space; QM, operator) and let

pPH'(e):= P —H„' (I)
I, =p P

be the perturbed Hamiltonian, where the H„do not
depend on the perturbation parameter e. Moreover, let

gP
W"(e):= g, W„"„,

p=O ~' (2)

and let —W(e) be generators (CM, functions on phase
space; QM, operators) of (CM, canonical; QM, unitary)
Ilows [4"(e)] ' with "time" e. This means that the
transformations 4"(e) satisfy the initial-value problem

tIi" (e)* = adW" (e) && 4"(e)*, 0&"(0) = id,
dE

(3)

where in CM the 4"(e)*' act on any phase space function
A via

4"(e)*(A):=A && 4'(e),
and where in CM

(4)

ad W" (e) (A):= [W"(e), AJ (5)

ad W" (e) (A):= —[W"(e), A]
fi

(7)

and [., ] denotes the commutator. With the understand-

ing that the appropriate definition (5) or (7) (depending on

and (, ) denotes the Poisson bracket. In QM, self-
adjoint operators —W" (e) generate one-parameter groups
of unitary transformations [&0"(e)] ' such that the 4"(e)
solve the same initial-value problem as given in (3) but
where the 4"(e)* act on operators A via

4"(e) (A):= 4 "(e) 'A4" (e),
and where now
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whether one is dealing with CM or QM) is chosen we pro-
ceed to present Kolmogorov's superconvergent method.
In the following it will be useful to have an expansion
for 4"(e)* in terms of operators T" independent of e.
Writing

C'"(~)* = g , Tp,
p=o I''

one finds that the T" are recursively determined by T„' =
id and

P
p+1 1+1 p —I '

t=O

In CM the T„" are differential operators such that T"(A)
means application of T" to the phase space function A,
whereas in QM they are operators acting on operators.

Kolmogorov's method consists of finding the genera-
tors W" (e) in such a way that

K" '(~) .= @" '(~)* o cP' (e)* o . . o @'(~)*[H (c)]

(10)

has an expansion in e

p
K" '(e):= g —K„"

p

with "integrable" terms up to order 2" ' —1. (Whereas
in CM the term integrable has a well-defined meaning,
this fails to be the case in QM. However, we only use
the notion of integrability to provide motivation for the
superconvergent method; all its equations are well defined
in CM without any need to define integrability and will
be well-defined operator equations in QM even though
the term "integrability" is not. ) Then a new perturbed
Hamiltonian H" '(e):= K" '(e) is defined such that its
unperturbed part Ho

' consists of the integrable part of
K" ' and its perturbation is of the order 2" '. We can
summarize the iterative procedure as follows (for a more
detailed discussion we refer the reader to [7] with the
warning that our notation differs from theirs):

Result of 4"
Hn —

1

Choice of 4":
~n

Result of 4':
Hn

Hn —
1

0

[int. up to O(2" ' —1)]

Hn 1 0 l ( p ( 2n 1

p

W'=0
p

ad W" (Hp ')

( p (2n —1

= Hn-' —Hn-1 2n-1 ( p (2"
p p

with adIIp '
( H„"

—' ) = 0

H() = H0
2n

+ g —;, H,"
p

—2n —1

[int. up to O(2" —1)]

(no perturbation)

H" ' = K" 2n —1 (

W' =0
p

leads to

Kp = H()

K'=0
p

2n (

( p (2n —1

H" =0, 1(p (2"
p

(no perturbation)

K'=H ' 2' '(p(2"
gn Hn —

1

p p

Hn ~n
p

2" (p

The meaning of . is to be understood as follows. Assume
H' ' is of the form given in the left column and choose
W„' = 0 for 1 (: p (: 2" '. Then one finds first Ko =
Ho, K' = 0 for l ( p & 2 ', and

adW" (H" ') = H" ' —H'

where H" ' is such thatp

(13)

~n d~n(Hn —
1) ~ Hn —

1 2" ' ~ p (2". (12)
adH„" '(H" ') = 0 (14)

Since Hp is already integrable up to O(2" ' —1) and
4' should improve this, one would like to have that the
K„' for 2' ' ( p ( 2' are integrable. Consequently, the
crucial point in this procedure becomes the construction
of the W' and some H ' for 2" ' ( p ( 2' such that

Then it follows from (12) that IC„" = H" ' and from
(14) that they commute with the unperturbed Hamiltonian
Ho

' of the previous step. The table summarizing the
method omits these intermediate steps and shows only the
results once (13) and (14) have been solved.
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In CM (13) and (14) can be satisfied with the help of the
averaging method and H„" ' turns out to be the average
of H' ' over the angle variables of the tori, which are
assumed to be compact. It should be noted, however, that
the H„" ' in general depend on e such that (15) is actually
an expansion in terms of functions of the perturbation
parameter. Since Hp

' is assumed to be integrable (14)
implies that H& and hence H0 are integrable as well.

Hence, after the nth transformation one has a Hamil-
tonian H" (e), where

B' '(t):= exp ——iA B xp e—rA)),
A l l

A, fi
T—(A)B:= lim—

T~CC T 0
T

B~"l(t)dt, (17)

dt ds[8'"~(s) —8' '] (18)S~"l(a):= lim—
T—+co

exist and

B~"l(T) —a
lim = 0.
T—+cc T

Then the following holds:

ada'"'(A) = —'[a'"', A] = O
fi

and

(20)

(15)
k=pi p 2r; i p ~ )

is integrable and the perturbations H" are of order 2" or
higher.

(b) Superconvergent method for self adj oint-opera
tors. —With our previous notation Eqs. (13) and (14) be-
come operator equations in QM which have to be solved
for each step. We can construct operators W„", H" ' sat-
isfying (13) and (14) with the help of the following quan-
tum analog of the classical averaging procedure [6], which
is a modified version of an idea used by Weinstein [8] in
the context of pseudodifferential operators. Let A, B be
self-adjoint operators such that

jHn —
I g

which completes the proof. Setting now 8'" = S
(H" ') solves (13) and (14) in QM with H"

H„" ' ":=H„, where the last equation introduces
a simplified notation.

(c) Interpretation of the algorithm for self adjo-int op
erators. —The results of the preceding section show that
we can execute Kolmogorov's superconvergent perturba-
tion algorithm in QM as well. But what has been gained?
By construction H" (e) and the original perturbed Hamil-
tonian H (e) are unitarily equivalent:

H" (e) = 4"(e) ' . . @'(e) 'H (e)4'(e) 4"(e) (22)

and thus have identical spectra. Since after the first
transformation [Hp, Hi ] = 0, we can diagonalize Hp

and H~ simultaneously which permits us to diagonalize
Hp '.= Hp + E'H) . After the second transformation we1 . 0 (0)

have

[H,', H, '"] = O = [H,', H, "'], (23)

and thus we can diagonalize

2 3

H =H + eH) + —H2 + —H3
2 0 (0) ~ (]) ~ (])
0 0 3I

(24)

E, (e) = E,"(e) + O(2"), (2&)

etc. In this way we arrive after n transformations at a di-
agonal Hp(e) whose eigenvalues E,"(e) approximate those
of H" (e) and thus of Hp(e). The eigenvectors Ij)" of Hp
are known by construction, and they approximate those of
H". Because of (22) it follows that 4'(e) .4"(e) Ij)"
are the appropriately approximated eigenvectors of the
original perturbed Hp(e). In formulas, if H"(e) Ij)(e) =
E, (e) Ij)(e) then

adS~"l(A) = —[S~"~(8),A] = a'"' —a.
fi

(21) Ij&(e) = @'(e) . . +"(e) Ij)" + o(2"). (26)

Proof:

ada (A) = lim——(A) . 1

T~co

1= lim—
T pcc

T —[BI"l(t),A] dt
A,

T d—8'"'(t) dt

ds —[8(")(s), A]6

1= lirn—T- T
dt ds —8' '(s)

d
ds

1= lim-
T~cc T

dt [8 (s) —8] = 8 —8,

B~"l(T) —a= lim
T~oci T

by assumption, and thus
T t

adS~"~(8) (A) = lim — dt
T—+co 0

Since the H„" depend on e, the E,'(e) are no longer a
pure power series expansion but should be viewed as an
expansion in terms of functions of e. These functions
themselves have in general infinite series expansions in e
so that already low orders of E,"(e) contain contributions
of all order in e. The example treated in the next section
will make this point clearer.

(d) An example: discrete and nondegenerate spec
trum. —It remains to show that the method constructed
here is truly distinct from the usual Rayleigh-Schrodinger
perturbation theory. For this purpose we sketch the re-
sults for the case of a Hamiltonian Hp = p, Ij )E,"(j I with
a purely discrete and nondegenerate spectrum and a per-
turbation only linear in e, i.e. , H~ = g, I, Ij)V,k(kI and
H" = 0 for p ~ 2. In this case the eigenvectors Ij)' of
Hp = Hp + eHi and Ij) of Hp coincide because Hp
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and H~ commute and Hp has a nondegenerate spec-(0) 0

trum. Continuing this argument inductively it is easy to
see that Hp and all Hp have the same eigenvectors I j). By
straightforward calculation one finds

W„" = ylj) „," „,(kl, (27)

' = g Ij) (jlH" 'Ij) & jl,
J

n /2" —1

E" =E + g~l g —Ej~
k=1

(28)

(29)

(I)where E, := (j IH( lj), 2k ' ~ l ~ 2" —1, and the E,"
are the eigenvalues of Hp. From the algorithm presented
in Sect. (a) one obtains

H2 = —[W(', H) + H(], (30)

~ 3

H = —
I

[W' W' [W,', H) + 3H ]]
+ 3 —[W2, H2 + H2]. (32)

(~)
Ej Vzj (33)

The appearance of the denominators E,'- ' —Ek
' in

W" leads to a perturbation theory substantially different
from the usual Rayleigh-Schrodinger theory. However,
this difference only shows up in the fourth and higher
order terms, since in H2 and H3 only commutators with
lV~' appear, which contains only the usual Rayleigh-
Schrodinger denominator E, —Ek. Indeed, one finds

H' = — [W' [W' H) + 2H ]t

1 (2)
J ~ EO EO &

jWk j k

(34)

(3) ~ Vjk Vkm Vmj ~ I V, k I'VjJ (35)

showing that up to O(3) the new method coincides with the usual Rayleigh-Schrodinger perturbation theory. But H4
contains W2 with denominators of the form E, —Ek = E, —E„+ E(Vj, —Vkk), which are functions of e and which

appear as denominators in

,gi (E,' —E(')'(E,' —«')

k@IWjWmWk

t

Eo

VjlVlkVkmVmj ( 1 1

o o o o I p
jul PkAj WmXk Ej Ek g j EI E( Ek )

+
(E —Ejo) (Ejo —E() (Ek —E E) —Ek j

(E,' —E„') (E,' —E') qE,
' —E,'

Eo —E

As an example we quote the result for the ground state correction up to Ep with the quartic perturbation Hj = x of the
(4) ~ 0 4

harmonic oscillator Hp ———d /dx + x2 (with fi = 1)

3 21 2 333 3 3(1317760 + 12935472m + 36433368m + 25183305@3)EoEsU=1+E — E+E e +Or
4 16 64 2048(4 + 9e) (4 + 15m) (4 + 21m)

which approximates the numerically computed eigenvalues [9] much better than the standard fourth order Rayleigh-
Schrodinger correction

3 21 2 333 3 30885 4Eo(e)Rs = 1 + —E E + E E + O(E
4 16 64 1024

(36)

This example also illustrates the statements made earlier
(n)

that the lower order corrections Ej already contain
infinite power series of e, which may be the reason for
improved convergence.
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In conclusion, it should be emphasized that the method
presented here is very general and, in principle, applicable
to any self-adjoint operator A and perturbation B provided
they (and the higher order operators) satisfy the conditions
needed to construct 8 and S(")(8) in (17) and (18). It is
also designed to include analytic perturbations which are
not necessarily only linear in the perturbation parameter.
Moreover, it gives the corrections as integrals of the form
B which, if desired, can be exhibited as sums over
intermediate states as was done in Sect. (d), but which
may be evaluated directly, circumventing the calculation
of these sums, which may sometimes be impossible. This
was already shown to be an advantage of the formulation
of the usual Rayleigh-Schrodinger theory as an analog
of the classical Poincare —von Zeipel perturbation method
in [6].

The method will be presented in more detail in a
forthcoming longer paper [10].
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