
VOLUME 74, NUMBER 8 PHYSICAL REVIEW LETTERS 20 FEBRUARY 1995

Comment on "Quantum Chaos in the
Born-Qppenheimer Approximation"
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where x&, x2, and x3 describe the two-level system by
means of the Bloch sphere while Q and P refer to the
oscillator. Neglecting in X;„, the term containing second-
order derivatives, we obtain a classical-like Liouville
operator that leads to a set of nonlinear equations of
motion, equivalent to the nonlinear dimer of [5]. This
is a factorization assumption equivalent to the MCQP
used by Bliimel and Esser [1] to derive their Eqs. (7) and
(9), dealing with the oscillator as a classical variable in
the Heisenberg equation of motion. The nonlinear and
chaotic properties thus obtained are due to the presence
of a reaction term, namely the second term on the right
hand side (r.h. s.) of Eq. (1), which within the MCQP
expresses the influence of the quantum subsystem on the
classical oscillator. However, we stress that the MCQP is
equivalent [4,7] to neglecting the third term on the r.h.s. of
Eq. (1), which is as strong as the term responsible for all
the interesting nonlinear properties of the quantum system
[5]. Unfortunately, it has been remarked that some of the
statistical properties stemming from this approximation
are incorrect, as, for instance, the predictions on the onset
of localization in the nonlinear dimer, convicting with the
prediction of exact equilibrium theories [8].

In their recent Letter [1] Bliimel and Esser assume that
a subsystem of a quantum system can be safely dealt
with as a classical system. This, referred to by them
as the mixed quantum-classical picture (MQCP), is the
same approximation as that behind the discrete nonlinear
Schrodinger equation (DNSE) [2]. It has been already
remarked [3] that the rigorous microscopic foundation
of the DNSE would also be equivalent to settling some
fundamental problems which have been haunting quantum
mechanics since its inception, insofar as the collapses of
the wave function would be obtained from within quantum
mechanics with no need of postulates [4], as well as to
accounting for important biological processes [2,5]. One
would also get, as Bliimel and Esser [1]do, quantum chaos.

However, as pointed out in [6], we are compelled by
quantum mechanics to average over the chaotic trajecto-
ries, thereby recovering the insensitivity of quantum me-
chanics to initial conditions. Furthermore, the error as-
sociated with the MQCP was recently carefully evaluated
[7,8] with the following conclusions. These papers, and
many others mentioned in [1] alike, concern the interac-
tion between a two-level system and an oscillator. Within
the Wigner formalism this interaction is described by the
Liouvillian

a a & a
5;„,= 2GQ x3 —x2 l

+Gxi
Bx2 i)x3 ) c3P

However, it must be stressed that, although the MCQP
is untenable from a rigorous quantum mechanical point
of view, some benefits can be derived from it. First of
all, the oscillator in the work of Bliimel and Esser is
slow. In this specific condition it has been shown [8]
that the equilibrium and dynamical statistical properties
produced by the assumption that the third term on the
r.h. s. of Eq. (1) can be neglected, are essentially correct.
Furthermore, albeit the quantum chaos effects produced
by the MCQP are not real, they serve the important
purpose of explaining a quantum effect that would be
incomprehensible without establishing a contact with the
wrong prediction on the occurence of chaos. In Refs. [6)
and [7] it was proved that the quantum counterpart of the
chaotic properties produced by the MCQP is the anomalous
increase of the quantum mechanical uncertainty of the
oscillator. The results of [6] as well as those of Bliimel
and Esser [1] should contribute to making more popular
the study of the quantum behavior of those systems which
would be chaotic within the framework of the MCQP,
while the attention of investigators is currently mainly
devoted to quantum systems which are chaotic in the
semiclassical limit [9].
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