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Suppression of Macroscopic Quantum Coherence in Magnetic Particles by Nuclear Spins
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The Neel vector of a small antiferromagnetic particle can in principle resonate between opposite
directions. Nuclear spins strongly suppress this and related macroscopic quantum coherence (MQC),
even when magnetic nuclei have only 2%%uo abundance. The resonance signal breaks up into well
separated groups of lines, and the highest frequency signal height increases with temperature as
—exp( —To/T2). For a recent claim to have seen MQC in ferritin, less than 3.5% of the particles
are found capable of contributing to th~ signal.

PACS numbers: 75.60.Jp, 03.65.Db, 76.20.+q, 76.60.Jx

Resonance between degenerate states of a complex
system, or macroscopic quantum coherence (MQC) as
Leggett [1] has termed it, becomes progressively harder
to see as the system becomes larger. The principal reason
is that macroscopic systems are almost always coupled
to an environment which is sensitive to different system
states, and dynamically suppresses MQC [2]. Recently,
Awschalom et al. claim to have seen MQC [3] in particles
of ferritin, an iron storage protein in the form of a hollow
shell of 75 A inner diameter, that can be filled with an
inorganic compound close in composition and structure
to ferrihydrite or hydrated n-Fe203 [4]. This core is
believed to be antiferromagnetic, and Awschalom et al.
ascribe the peak in their ac susceptibility to resonance of
the Neel vector between opposite easy axes.

In this Letter we show that nuclear spins strongly
suppress MQC in magnetic particles. We stress at the
outset that this study is quite different from a previous
one [5] of the effect of nuclear spins on macroscopic
quantum tunneling (MQT) in magnetic particles. It is
essential to discriminate between MQC and MQT. The
latter refers to the decay of a metastable state. MQC
is a far more delicate phenomenon than MQT, as it is
much more easily destroyed by an environment, and by
very small c-number symmetry breaking fields that spoil
the degeneracy. The present results follow these general
expectations. While nuclear spins do suppress MQT [5],
their effect can be reduced by using elements such as
Fe and Ni with low natural abundances of the magnetic
nuclear species ( Fe, 'Ni). By contrast we will find that
even with such elements, the effect on MQC is severe.

Prokof'ev and Stamp [6] have also studied the effect
of environmental spins on MQC. They also conclude
that MQC is suppressed, but their emphasis is rather
different. They focus on topological effects, and on a
much larger range of environmental spin frequencies with
a view to studying the conceptually intriguing transition
from weak to strong coupling. We will limit ourselves
to the frequency range relevant to nuclear spins, and
focus on the ac susceptibility ~"(co) as the quantity of
greatest experimental interest. Our Hamiltonian [Eqs. (6)

and (7) below] is in fact buried in Eq. (7) of Ref. [6], but
the remarkable resulting behavior of g" is not realized
there. We find that the spectral line at the bare tunneling
frequency 50 is chopped up into a large number of
lines with cu ~ 50. Almost all the spectral weight is at
~ « Ao, but the line at Ao persists, and has a weight
given by the fraction of magnetic particles with no net
nuclear spin polarization p. Since this fraction increases
with temperature T, a surprising result is that MQC may
be enhanced with increasing T in some range. It also
suggests double resonance experiments driving p to
zero by a strong rf pulse at ~„would lead to strong
transient enhancement of the MQC signal.

These results also contrast strikingly with those for
the two level problem with an Ohmic bath [7]. There,
the bare line is pulled down (possibly to co = 0) and
broadened, and acquires a low frequency tail, but it
remains one line. It is interesting that our bath strongly
violates the Caldeira-Leggett condition [8] under which
any bath is equivalent to a set of harmonic oscillators,
viz. that any one bath degree of freedom be weakly
perturbed by the system. This condition is met by nuclear
spins for MQT [5], elastic waves for both MQT and
MQC [9], and Stoner excitations for domain wall MQT
in metallic magnets [10]. The differences offer a valuable
lesson in the variety of ways in which an environment can
affect MQC and MQT.

We will treat only antiferromagnetic MQC [11]. The
results extend trivially to ferromagnetic MQC through
180' [6,12]. We consider a small uniaxially anisotropic
antiferromagnetic particle with N, (~ 104) atomic mo-
ments or spins, each of magnitude s. Denoting the spin
directions on the two sublattices by unit vectors n[ and
fl2, we have the obvious Hamiltonian [1lb, 13]:

A, = Jfl~ - fl2 —K(fl„+ n2, ),

where 1» K ) 0. Adiabatic elimination of the total
moment (~ fi + flq) leads to the following Euclidean
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action for the Neel vector l:
N hs,[i(~)] = (O + sin Op + cu, sin O)d~,

(2)
where O and P are the polar angles of 1 and or, =
4(JK)' 2/N, hs is the antiferromagnetic resonance fre-
quency. Instanton methods [11,13] give a tunneling fre-
quency, Ap = (cu, /vr)e B, where B = 2N, s(K/J)'t2. The
instanton itself is given by

sinO = sech', ~, P = 0. (3)
For typical values of J and K, tp, /2' —10"—10'3 Hz.
Even for a weak ferromagnet such as n-Fe203, cu, /2~—
10 6Hz. Because B ~ N„ it is unlikely that Ap will
exceed more than a few MHz, if N, ~ 5000.

Next, let N of the magnetic ions have magnetic nuclei.
Each nuclear spin I; couples to the electronic spin s; on
the same atom, and the total interaction Hamiltonian can
be written as

N

A„= —AQ I; s, . (4)
i=1

The nuclear Larmor frequency is given by co„= As/h.
For simplicity we consider only I = 2. For ferritin,

1
the relevant nucleus is Fe, I is 2, and the hyperfine
field is known from Mossbauer data [4] to be 50 ~
2 T, giving co, /2~ = 68.5 MHz (—= 3.3 mK). These are
typical hyperfine fields for magnetic ions [14],and we can
safely assume that co, » &cd„» Ap.

In lieu of ~"(cu), we will find the correlation function
(M is the total uncompensated moment of a particle with
Mp ——IMI):

C(t) = (M(t) . M(0)) = Mp'(l(t) 1(0)). (5)
To do this, we will first analyze the system composed of
the Neel vector restricted to the two states Il = ~z) and
the nuclear spins, and obtain approximately the energy
level spectrum. Since the system is finite, these levels will
be sharp. We will then put in relaxation mechanisms by
hand in the form of a nuclear T1 time T1„. Processes that
give rise to T1 include phonons, paramagnetic impurities,
and other nuclear species' spins.

To find the spectrum, let us first represent the states
Il = ~z) as pseudospin states I+) and

I

—) and write the
Hamiltonian using corresponding spin operators o o-y,

and o, A, is evidently mapped on to hypo. , /2. To
map 9f„, we use a left handed system of nuclear spin
axis on one sublattice, effectively inverting s;, so that
1 s; ~ i . 1, for all i in Eq. (4). If Eq. (4) is projected
onto the states I~), we evidently get a term proportional
to cr„so the total Hamiltonian is

1 1
Mp = —hypo, ——hen„o, g p, k, (6)

k=1

where p, k
= 2I k are the Pauli spin operators for the

nuclei. Note that, as discussed in Sect. I of [7(b)] [see
the remarks preceding Eq. (1.4) there], Eq. (6) does not

(7)

Here, ~„ is a projection operator onto states with p = n

and p = —n.
It is straightforward to diagonalize Eq. (7) by rewriting

Q„ in terms of the total nuclear spin. Let us denote the
tunnel splittings and corresponding degeneracies within
each polarization block by A~ k and g~ k. We find

&N. —k&

)
(8)

have any terms coupling the bath to o- or o-~. Such
terms describe processes wherein the bath changes the
overlap of I+) and I

—). They are themselves of order
Ap or smaller, and thus negligible compared to the a-,
term. The nonlinearity of our bath and the difference with
the spin-boson problem [7] is now manifest: According
to Eq. (6), the z component of each nuclear spin is
conserved, and so, therefore, is the polarization p =
gl, p, &. (Note that p is defined to be an integer. ) If we
label the states as I~, p, n), where p is the polarization,
and n is the remaining set of quantum numbers, I+, p, a)
and I

—,—p', a') are nondegenerate by Ip —p'Ice„, which
far exceeds Ap, lf p 4 p'. The mixing between such
states is thus negligible, and, since p is conserved, we
obtain the very simple result that the dominant tunneling
occurs only when p = 0, and then at the bare fre
quency Ap.

Let us now consider the states with p 4 0. Since the
states I+, p, u) and I

—,—p, n') for a given p are all
degenerate by the above argument, let us seek an effective
Hamiltonian describing how each group is split by the
small amount of tunneling that does occur. We see from
Eq. (4) that to fiip a nuclear spin, the local field seen
by it, which is parallel to l, must have components in
the x-y plane. In other words, nuclear spins can only
cofIip with l. This point becomes very clear if one
computes the path integral for the total partition function
of our system using the action (2) and the coupling (4).
This path integral is still dominated by instantons for
l. Between instantons, each nuclear spin sees a field
along z, and cannot fIip. During an instanton, it sees a
field in the x-y plane of magnitude h~„/y„(y„ is the
nuclear spectroscopic splitting ratio) for a time -cu, '.
Since ~„/~, « I, the amplitude Ak for k spins to cofiip
is of order Az —Ap(cu, /~, )" from perturbation theory.
(A more accurate calculation will be given later. ) The
desired coAip Hamiltonian which is block diagonal by
polarization can thus be written as

N

9f,f = —ho., g ApQp,
p=1
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where k = 0, 1, . . . , N, and N = (N ~ ~p~)/2. The sec-
ond moment (about zero) within each group is Tr(Q /2),
which gives

(0') = 5„ (1o)"k~)
A closed form can also be found for (A4). Odd moments
are harder. For p = 1, 2, and 3, e.g. , as N ~ ~, we have

(&p) $2mN N 427rN~

Ap 4 ' 4 ' 32

We thus see that the spectrum of y" consists of a
series of groups of lines centered at (0„) plus a single
line at Ap. Each group is lower than the previous one by
the ratio N'/ —cu, /cu„ instead of ~„/cu„but this is still
small compared to unity if N —100 or so. The relative
weights of the lines in a group are given by Eq. (9), and
the total weight of a group is proportional to the thermal
distribution of the polarization:

(2~ 2
)
—1/2 —( P P) /2o—

~p (12)

where p = N tanh(Pe„/2), a.
~

= N'/ sech(Pe„/2), P =
1/kg T, and e, = hen„.

Relaxation will broaden the lines as follows. Suppose
we are in a state ~+, {p,')), with some value of p at
t = 0. This state will resonate with others of the same
energy at a superposition of frequencies taken from the
set O, ~ &. This resonance will persist until time t only if
all the nuclear spins maintain relative phase coherence,
i.e., provided none of them suffers a T& process. If T]„
is the relaxation time for one nuclear spin, the probability
of this happening is exp( —¹/T~„), and we expect C(t)
to decay with this factor. Since T], can be as long as a
few seconds, it is possible for the lines at zero and nearby
polarizations to not be overly broadened, but lines with

~p~
~ 3 or so are unlikely to be distinguishable from a

broad background. For practical purposes therefore, C(t)
from one particle can be written as

C(t) = foMo cos(hot)e ' '" + C(„~(t), (13)
where C], is the frequency contribution from p 4 0. A
better formula for fo than Eq. (12) is

fo = (2vrN) '/ [cosh(Pe„/2)] . (14)

For kqT » e„, fo —exp( —To/T ), with To = Ne„/Sks
An important proviso to the above results is that co„be

very nearly the same for all nuclear spins in a particle.
If the dispersion in ~„ is comparable to or more than
N '/ Ap, the line at Ap will also be shifted down and
split, as the different p = 0 states will not be degenerate.
Also, the spread AA~ within a group will be reduced for
larger p values.

Let us now discuss the ferritin experiment [3] in light
of these results. We have previously noted [15] that the
signal seen in [3] is too large and difficult to reconcile
with elementary calculations that do not explicitly account
for dissipation. If nuclear spins are included, the expected

signal height should be reduced still further by fp E. ach
ferritin particle in [3] has N, = 4500 Fe ions, giving
N = 101, using a 2.2S% abundance for Fe, and Tp =
11.7 mK, using a SO T hyperfine field. At T = 29.5 mK,
the lowest temperature studied in [3], and the one at which
the peak in y" is shown, fo = 0.034. (Fluctuations in N
from one particle to another have negligible effect on fo.)
Thus the upper bound P„, on the peak power absorption
calculated in ['15] should be lowered to 5. 1 x 10 23 W,
and the direct estimate to 2.4 X 10 2~ W. The actual
absorption is much larger: 10 ' W. This makes the
interpretation of the data in terms of MQC even more
implausible.

One should expect an even smaller signal height, in
fact, due to proton spins by an additional factor which
we now estimate. Each ferritin particle contains about
N~ = 8000 protons. The local field at every proton site
reverses when 1 flips, so the same considerations of
cofIipping, etc. apply to the protons as to the Fe nuclei.
The local field at the protons is unknown and probably
distributed, but a mean value of 100 G of dipolar origin is
not unreasonable. This gives e, = 20 p, K or 0.43 MHz
in frequency units, compared to Ap = 950 kHz. If we
allow states differing by less than 2A to mix (although the
frequency spread is larger than seen), only particles with
proton polarization ~p~ ~ 5 can contribute. This fraction
is —11(2~N~) '/2 = 0.05. Note that this is almost purely
entropic, so it is not too sensitive to uncertainties in the
local field.

We conclude by calculating A~. For k&T && Ace„ the
partition function is given by the path integral over all
closed paths obeying 1(0) = t(PR) = z:

Z(P) = 2 $[dt]e ' ' '~~ "Ajt(v)j, (15)

Ph
A = zo Tr, T, expl —R (16)

where zo ——2 cosh(Pe. „/2), and Tr, denotes a trace over
the nuclear spins. Without the latter, the dominant paths
consist of instantons with a width -~, ', and separations
»cu, '. The j instanton path (where j must be even)
has an action jB. The fluctuations around these paths
can be thought of as composed of independent sets of
fluctuations around each instanton, and give a factor D j,
where D —co, is the factor (or fluctuation determinant)
for one instanton. Integrating over the locations of the
instanton centers gives (Itp)'/j!, and summing over j we
obtain Z = 2 cosh(ho/2kpT), with Ao ~ De

A key point is that the mean instanton-instanton sep-
aration is -Ap '. If we had a nondegenerate problem,
where the energy of the 1 = —z exceeded that of the z
state by e, with e » Ap, we would find that the mean
durations of the paths in the —z state would shrink to or-
der e '. Each instanton woold be effectively bound to an
anti-instanton, and j instanton paths would add to give a
contribution of O(P'/2) and not O(P'). The same holds
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when nuclear spins are included. The important paths are
those where instantons join degenerate states, and which
require as few nuclear spin Hips as possible. Let us de-
note A for a j instanton path by A, , the contribution to
A, from states with polarization p by A, ~, and define
Z, and Z, „analogously. For the case j = 0, I(r) = i,
and Ao = 1. Next, let us consider j = 2, with instanton
centers at ~~, r2, and 72 7) )+ clap . Suppose the ini-
tial state is one of ~+, p, n) T. his has N+ up spins and
N downs. At ~~, p spins must Hip from up to down to
maintain degeneracy. These can be chosen in

(N, '1

kP)
ways (assuming p & 0), but the same p spins must ]lip
back to up at 7-2. Since the magnetic field seen by one
nucleus during the instanton at r; is hto„y„'l(r —r;), and
since to, « lip, the contribution of this state to Aq is

e» I'(N &' I(U; U, ')", (17)

where U~
+ is the one coflip amplitude:

I ll d7.

and U2+ is similarly defined. As co„/co, « 1, perturba-
tion theory suffices, and we get

U
—+ lt+(t) dt.

(N+ ~ to„& ~

"(P )
dt ds singi(t)

sing ( ) Ptit ){—i P {s)t

where g; and ttt; are polar angles for I, . The correspond-
ing term in the partition function is

Z2„= 2 dl e
—0|~~ A (21)

The paths are now restricted to have two instantons, and
only their shape needs to be found. Since we only need
the answer asymptotically as %, ~, the important point
is that the factor of A2„ in Eq. (21) does not modify
the least action path, just as in one-dimensional Laplace
integrals of the type f h(t)e '{')dt, the function h(t) does
not modify the critical points u'(t, ) = 0, which give the
leading x ~ ~ behavior. Note in particular that the co„I'

factor multiplies the entire expression and thus cannot
affect the time scale of the instanton. We can thus use
Eq. (3) for sing in Eq. (21), but tttt and ttt2 are no longer
independent, and A2„ is evidently largest when ttti = @z.

For U2+, we get l2 instead; l = l ~ il~. Note that
we can extend the limits in Eq. (19) to ~tx, as I = 0,
if co, ~r —~;~ && 1. Multiplying Eq. (17) by the total
number of states with polarization p, we get

Ap = Ap(m'to„/2', )". (22)
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The factor in square brackets in Eq. (20) is then (~/to, ) .
Integration over the instanton centers yields a factor of
(Ilp) /2, and, since Z(p) is a sum of terms of the form
2 cosh(pIIA~&/2, Eq. (21) is the p term in its Taylor
expansion. The remaining factor in Eq. (21) is evidently
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